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ABSTRACT 

The transport of vorticity in Rivlin-Ericksen viscoelastic fluid in the presence of suspended 

magnetic particles in porous medium is considered. Equations governing the transport of 

vorticity in Rivlin-Ericksen viscoelastic fluid in the presence of suspended magnetic 

particles in porous medium are obtained from the equations of magnetic fluid flow 

proposed by Wagh and Jawandhia (1996). A two-dimensional case is also studied. 

Key words: Rivlin-Ericksen viscoelastic fluid, suspended particles, vorticity, porous 

medium. 

 

INTRODUCTION 

Magnetic fluids are those fluids in which magnetic particles are suspended in a liquid carrier. 

Thus, it is a two-phase system, consisting of solid and liquid phases. We shall suppose that 

the liquid phase is non-magnetic in nature and magnetic force acts only on the magnetic 

particles. Thus, the magnetic force changes the velocity of the magnetic particles. 

Consequently, the dragging force acting on the carrier liquid is changed and thus the flow of 

carrier liquid is also influenced by the magnetic force. Due to the relative velocity between 

the solid and liquid particles, the net effect of the particles suspended in the fluid is an extra 

dragging force acting on the system. In recent years, there has been considerable interest in 

the study of magnetic fluids. Saffman (1962) proposed the equations of the flow of 

suspension of non-magnetic particles. These equations were modified by Wagh (1991) to 

describe the flow of magnetic fluid, by including the magnetic body force HM0 . Wagh 

and Jawandhia (1996) have studied the transport of vorticity in a magnetic fluid. 

 

With the growing importance of non-Newtonian fluids in modern technology and industries, 

investigations on such fluids are desirable. Oldroyd (1958) proposed a theoretical model for a 

class of viscoelastic fluids. Toms and Strawbridge (1953) revealed that a dilute solution of  

methyl  methacrylate  in  n-butyl  acetate  agrees well with the theoretical model  

of Oldroyd   fluid. The thermal instability of  Maxwellian viscoelastic fluid in the presence of 

a uniform rotation has been considered by Bhatia and Steiner (1972), where rotation is found 

to have a destabilizing effect. This is in contrast to the thermal instability of a Newtonian 

fluid where rotation has a stabilizing effect. The thermal instability of an Oldroydian 
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viscoelastic fluid acted on by a uniform rotation has been studied by Sharma (1976). There 

are many viscoelastic fluids that cannot be characterized by Maxwell’s or Oldroyd’s 

constitutive relations. The Rivlin-Ericksen viscoelastic fluid is one such fluid. Rivlin and 

Ericksen (1955) have studied the stress-deformation relaxation for isotropic materials. Garg 

et al. (1994) have studied the drag on a sphere oscillating in conducting dusty Rivlin-Ericksen 

elastico-viscous liquid. Thermal instability in Rivlin-Ericksen elastico-viscous fluid in 

presence of rotation and magnetic field, separately, has been investigated by Sharma and 

Kumar (1996, 1997a). Sharma and Kumar (1997b) have studied the hydromagnetic stability 

of two Rivlin-Ericksen elastico-viscous superposed conducting fluids and the analysis has 

been carried out, for two highly viscous fluids of equal kinematic viscosities and equal 

kinematic viscoelasticities. It is found that the stability criterion is independent of the effects 

of viscosity and viscoelasticity and is dependent on the orientation and magnitude of the 

magnetic field. Kumar and Singh (2006) have studied the stability of two superposed Rivlin-

Ericksen viscoelastic fluids in the presence of suspended particles. In another study, Kumar et 

al. (2007) have studied the hydrodynamic and hydromagnetic stability of two stratified 

Rivlin-Ericksen elastico-viscous superposed fluids. The medium has been considered to be 

non-porous in all the above studies.  

The flow through porous media is of considerable interest for petroleum engineers and 

geophysical fluid dynamicists. A great number of applications in geophysics may be found in 

the books by Phillips (1991), Ingham and Pop (1998), and Nield and Bejan (1999). When the 

fluid slowly percolates through the pores of a macroscopically homogeneous and isotropic 

porous medium, the gross effect is represented by the Darcy’s law. As a result of this 

macroscopic law, the usual viscous term in the equations of fluid motion is replaced by the 

resistance term q
tk
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, where    and   are the viscosity and viscoelasticity of 

the Rivlin-Ericksen fluid, 1k  is the medium permeability and q


 is the Darcian (filter) velocity 

of the fluid. Lapwood (1948) has studied the stability of convective flow in hydromagnetics 

in a porous medium using Rayleigh’s procedure. The Rayleigh instability of a thermal 

boundary layer in flow through porous medium has been considered by Wooding (1960). The 

stability of superposed Rivlin-Ericksen elastico-viscous fluids permeated with suspended 

particles in a porous medium has been considered by Kumar (2000). In another study, Kumar 

et al. (2004) have considered the instability of two rotating viscoelastic (Rivlin-Ericksen) 

superposed fluids with suspended particles in porous medium. Kumar et al. (2005) have 

considered the MHD instability of rotating superposed Rivlin-Ericksen viscoelastic fluids 

through porous medium.    

           Keeping in mind the importance of non-Newtonian fluids in modern technology and 

industries and owing to the importance of porous medium in chemical engineering and 

geophysics, the present paper attempts to study the transport of vorticity in magnetic Rivlin-

Ericksen viscoelastic fluid-particle mixtures in porous medium by using the equations 

proposed by Wagh and Jawandhia (1996). 
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BASIC ASSUMPTIONS AND MAGNETIC BODY FORCE 

Particles of magnetic material are much larger than the size of the molecules of carrier liquid. 

Accordingly considering the limit of a microscopic volume element in which a fluid can be 

assumed to be a continuous medium and the magnetic particles must be treated as discrete 

entities. Now, if one considers a cell of magnetic fluid containing a larger number of 

magnetic particles then one must consider the micro rotation of the cell in addition to its 

translations as a point mass. Thus, one has to assign average velocity dq


and the average 

angular velocity 


 of the cell. But, here as an approximation, we neglect the effect of micro 

rotation. We shall also make the following assumptions: 

(i) Most of the ferrofluids are relatively poor conductors and hence free current 

density J


is negligible and hence BJ


 is assumed to be insignificant. 

(ii) The magnetic field is assumed to be curl free i.e. .0 H


 

(iii) In many practical situations liquid compressibility is not important. Hence 

contribution due to magnetic friction can be neglected. The remaining force of 

magnetic field is referred as magnetization force. 

(iv) All time-dependent magnetization effects in the fluid such as hysteresis are 

assumed to be negligible and the magnetization M


is assumed to be collinear with 

H


. 

From electromagnetic theory, the force per unit volume in MKS units on a piece of 

magnetized material of magnetization M


 (i.e. dipole moment per unit volume) in the field of 

magnetic intensity H


 is  HM


.0 , where 0  is the free space permeability. 
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Using assumption (iv), we get 
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Thus the magnetic body force assumes the form [Rosensweig (1997)] 

                           .0 HMfm  


                                                                                           ...(3) 

 

DERIVATION OF EQUATIONS GOVERNING TRANSPORT OF VORTICITY IN 

MAGNETIC VISCOELASTIC RIVLIN-ERICKSEN FLUID 

Wagh (1991) modified the Saffman’s equations for flow of suspension to describe the flow of 

magnetic fluid by including the body force HM0 acting on the suspended magnetic 
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particles. Now the equations expressing the flow of suspended magnetic particles and the 

flow of viscoelastic Rivlin-Ericksen fluid in which magnetic particles are suspended in 

porous medium are 
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where mN is the mass of particles per unit volume, 6K , where   is the particle 

radius, is the Stokes’ drag coeffiecient, N is the number density,   is the medium porosity 

and is defined as 
volumetotal

voidstheofvolume
  ,  .10    

For very fluffy foam materials,   is nearly one and in bed of packed spheres in the range 

0.25-0.50. 

               In the equations of motion for the fluid, the presence of suspended particles adds an 

extra force term, proportional to the velocity difference between suspended particles and 

fluid. Since the force exerted by the fluid on the suspended particles is equal and opposite to 

that exerted by the particles on the fluid, there must be an extra force term, equal in 

magnitude but opposite in sign, in the equations of motion for the suspended particles. 

Making use of the Lagrange’s vector identities 
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Equations (4) and (5) become 
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where dq


  and q


1  are solid vorticity and fluid vorticity. 

Taking the curl of these equations and keeping that the curl of a gradient is identically zero, 

we have 
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By making use of the vector identities 
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Eqs. (9) and (10) become 
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where  and are kinematic viscosity and kinematic viscoelasticity, respectively and 
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In Eq. (13), 
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Since the curl of the gradient is zero, the last term in Eq. (15) is zero. Also since  
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By making use of (16), Equation (15) becomes 
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The first term on the right hand side of this equation is clearly zero, hence we get 

  HT
T

M
HM 












 .                                                                                          ...(18) 

Putting this in Eq. (13), we get 
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Here (14) and (19) are the equations governing the transport of vorticity in magnetic 

viscoelastic Rivlin-Ericksen fluid-particle mixtures in porous medium. 

             In Equation (19), the first term HT
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solid vorticity on account of exchange of vorticity between the liquid and solid in porous 

medium. 

           From Equations (14) and (19), it follows that the transport of solid vorticity 


 is 

coupled with the transport of fluid vorticity 1


 in porous medium. 

           From Equation (19), we see that if solid vorticity 
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 is zero, then the fluid vorticity 1
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This implies that due to thermo-kinetic process, fluid vorticity may exist in the absence 

of solid vorticity in porous medium. Equation (20) also shows that fluid vorticity decreases 

in the presence of porosity. In the absence of porous medium  1  
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This is in conformity with Wagh and Jawandhia (1996) result. 

            From Eq. (14), we find that if 1


 is zero, then 


 is also zero. This implies that when 

fluid vorticity is zero, then solid vorticity is necessarily zero. 

             In the absence of suspended magnetic particles, N is zero and magnetization M is 

also zero, so Equation (19) is identically satisfied and Eq. (14) reduces to  
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This equation is vorticity transport equation in porous medium. The last term on the right 

hand side of Equation (22) represents the rate at which 1


 varies for a given particle, when 

the vortex lines move with the fluid, the strengths of the vortices remaining constant. The 

first term represents the rate of dissipation of vorticity through friction (resistance) and rate of 

change of vorticity due to fluid viscoelasticity. 

 

TWO-DIMENSIONAL CASE 

Here we consider the two-dimensional case: 
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In two-dimensional case, Equation (19) becomes 
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Similarly, Eq. (14) becomes 

 ,11

1

1

1

1
zzzz

z KN

tkkDt

D












                                                            (26) 

since it can be easily verified that  
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               The first term on the right hand side of Equation (26) is the change of fluid vorticity 

due to internal friction (resistance), the second term is the rate of change of fluid vorticity due 

to fluid viscoelasticity and the third term is change in fluid vorticity on account of exchange 

of vorticity between solid and liquid. Equation (26) does not involve explicitly the term 

representing change of vorticity due to magnetic field gradient and/or temperature gradient. 

But Eq. (25) shows that solid vorticity z  depends on these factors. Hence, it follows that 

fluid vorticity is indirectly influenced by the temperature and the magnetic field 

gradient. 

              In the absence of magnetic particles, N is zero and magnetization M is also zero, so 

Equation (25) is identically satisfied and Equation (26) reduces to classical equation of 

transport of vorticity for fluid in porous medium. If instead of magnetic field we consider a 

suspension of non-magnetic particles, then the corresponding equation for the transport of 

vorticity may be obtained by putting M equal to zero in the equations governing the transport 

of vorticity in magnetic fluids. If magnetization M of the magnetic particles is independent of 
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temperature, then the first term of Equations (19) and (25) vanish and so the equations 

governing the transport of vorticity in magnetic fluid in porous medium are same as those 

which govern the transport of vorticity in non-magnetic suspensions in porous medium. 

                 If the temperature gradient T  vanishes or if the magnetic field gradient 

H vanishes or if T  is parallel to H , then also the first term of Equations (19) and 

(25) vanish. Thus, we see that in this case also the transport of vorticity in magnetic 

fluid in porous medium is same as transport of vorticity in non-magnetic suspension in 

porous medium. 
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