

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

21

AN APPROACH FOR GROUPING AND CLASSIFICATION OF BUGS FOR SOFTWARE

ENGINEERING PRACTICES

Karthik B S

M.Tech Student, Dept. of CSE, Kuppam Engineering College

Kuppam, A.P, India

bashettykarthik@gmail.com

Thulasi Krishna S

Assoc. Prof, Dept. of CSE, Kuppam Engineering College

Kuppam, A.P, India

thulasikrishna1988@gmail.com

Abstract

In today’s world number of software products coming into market according to growing demands and to

serve human community. Each of the products has a list of known bugs or bugs created post release. In

order to improve the quality of the product and to have early release of few bugs to the end consumer the

product engineering, application development and Quality Assurance team sit together on a call, go

through each and every bug one by one and then assign a priority and take those bugs into the

development lifecycle of the product. In this paper algorithm is presented which performs the duplicate

bug detection using a series of data mining techniques like Data Cleaning, Tokenization, Weight

Computation, IDFT Computation, Score Computation and Duplicate Bug Detection. Classification of

bugs is also performed for various sets of categories by using contingency and enhanced contingency

algorithm. The Results show that the number of bugs to be discussed will get reduced in an automated

fashion and also duplicate bugs are grouped.

Keywords- Software Quality, Data Mining, Software Products, Software Engineering, Duplication,

Tokenization, Classification, Contingency.

I. INTRODUCTION

There are many works available in the literature related to the bug triage process. In the paper [1] software is

used in which the testing team and the development team can report bugs and perform various product

development related activities. The argument is made that the bug matching can be used by comparing the

words and then if words of the 2 bugs are greater than 75% percent the bugs are treated as similar.

In the paper [2] the most common errors like script errors are described and a way to generate a test case by

using automation frameworks is described. The algorithm does require the manual tester to write a script and

then run an automation test case to group the bugs which is a very tedious process.

mailto:bashettykarthik@gmail.com
mailto:thulasikrishna1988@gmail.com

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

22

In the paper [3] first a bug repository is created and then machine learning algorithms are applied to classify

the bugs and also architecture is developed to assign bugs to developers. However the algorithm suffers from

accuracy and bugs are at random assigned to developer which increases the fix time drastically because the

bug might be assigned to a developer who has little or no knowledge of the specific task.

In the paper [4] the vector space model is used for huge text data representation. It does not maintain the

ordering of the words therefore authors produces an approach in which distance between the words in the

graphs are used to intercept the information in terms of sentence structure of the underlying data.

II. PROPOSED FRAMEWORK

In the current approach it is assumed that we have a list of bugs across various products collected from open

repository. The bugs undergo a series of data mining steps like cleaning, token formation, weight

computation. Using the duplicate bug detection algorithm, duplicate bugs are eliminated there by using

probability, contingency and enhanced contingency similar bugs are categorized based on various categories.

Fig. 1 Methodology for Duplicate Bug Detection

Figure shows the methodology for duplicate bug detection. As shown in figure series of steps are used for

detecting duplicate bugs to improve quality.

A. Bug Collection

The bugs for all the above products namely Software Engineering for any of product, Mozilla, open office

and eclipse. All the bugs will be collected as a set {Bug Id, Component, Priority, Type, Version, Status, and

Description}.

B. Cleaning

This module is used in order to remove stop words from the bug description. The stop words used in this

project are standard words given in the web mining forums. The stop words are namely able, about, above,

abroad, according, accordingly, across, actually, adj, after, afterwards, again, against, Ago, ahead, ain't, all,

allow, allows, almost, alone, along, alongside, already, also, although, always, am, Amid, amidst, among,

Token Formation

Bug Collection Cleaning

Weight Computation

Duplicate Bug

Detection

Text Based

Classification

Enhanced Weight

Computation

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

23

amongst, an and, another, any, anybody, anyhow, anyone, anything, anyway, anyways, anywhere, apart,

appear, appreciate, appropriate, are, aren't, around, as, a's, aside, etc.,

C. Token Formation

Token Formation is a process of converting the clean bug into a sequence of tokens. Each token is associated

with a bug {TokenId, TokenName, BugId, and ProductId}.

D. Weight Computation

It is defined as the number of times a token appears in the review. The Weight will remove if any redundancy

exists. The Weight is stored in the format {FreqId, TokenName, Freq, BugId, ProductId}.

E. Score Computation

The Score computation is performed per token and is computed across the bugs by using the below formula

and is stored in the format {ScoreId, Weight, IDFT, Score, BugId, ProductId}.

 




























































)(75.0

2.1k1

collection text in thelength document average

.)1(,

)1(.),(
)(),(

1

1

1

qiIDFb

avgdl

documentoflengthD

FrequencyDocumentInverseIDF

frequencyf

avgdl

D
bbkDqf

kDqf
qIDFQDscore

n

i

i

i
i

Inverse Document frequency (IDF) can be computed by using the below formulae.

ii

i

i
i

qcontainingdocumentsofnumberqn

documentsofnumberN

qn

qnN
qIDF










)(

5.0)(

5.0)(
log)(

The similarity between 2 bugs d1 and d2 are measured using BM25F algorithm.

2

1

,

),(25),(

2

1

2121

documentd

documentd

Where

ddFBMddtextual ndescriptio







F. Duplicate Bug Detection

The algorithm is used to detect the whether the two bugs are similar or not. The algorithm finds the inter sum

and union sum and then the bugs are found in terms of grouping.

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

24

1. Consider the two bugs to be compared

2. Find the List of Concept words in Bug A1

3. Find the List of Concept words in Bug A2

4. Find the inter set between List of Concept Words in Bugs A1 and List of Concept Words in Bugs A2.

5. Find the union set between List of Concept Words in Bugs A1 and List of Concept Words in Bugs

A2.

6. Start from index1 till the end of Concept Words in the inter set

a. Obtain the kth Concept phrase K

b. Measure the text Weight of Bugs A1 for K

c. Measure the text Weight of Bugs A2 for K

d. If tf(k,A1)>=tf(k,A2) measure the inter sum as below

intersum = intersum+tf (k, A1)

else

intersum = intersum+tf (k, A2)

e. k=k+1

f. Repeat the process from step a to step e until all tokens in the inter set is exhausted

7. Start from index1 till the end of Concept Words in the union set.

a. Obtain the kth Concept phrase K

b. Measure the text Weight of Bugs A1 for K

c. Measure the text Weight of Bugs A2 for K

d. If tf(k,A1)<tf(k,A2) measure the inter sum as below

Uncommon sum = Uncommon sum +tf(k, A1)

Else

Uncommon sum = Uncommon sum +tf (k, A2)

e. k=k+1

f. Repeat the process from step a to step e until all tokens in the union set are exhausted

g. Measure Similarity = InterSum/Uncommon sum

G. Classification

The algorithm is used post duplicate bug detection for classifying the bugs into various categories by

computing the probability there by measuring the contingency and sorting according to category ratio.

1. Obtains the bugs from the collection

2. For each of the bugs the probability is computed using the following formula

41

)|(





i

i
i

C

WordsofNumberTotal

CcategoryofwordsofNumber
CbP

3. Also the negative probability is also computed for each of the bug

4. The probability computation is computed and constructed as below

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

25

Probability- Positive Probability

BugID – ID of the Bug

CatName – c1, c2, c3 and c4

NegativeProbability – Finding the negative probability

Count- Number of words for the category

TotalWords- Number of words

5. The contingency is measure using the following

)(cp)(cp)(cpOtherTotal -ve

)p(c)p(c)p(COtherveTotal

c

c

432

432

111

1

1





6. The enhanced contingency is measured using the following equation

1

1

1

11

1

1

cc

cc

OtherveTotal)(cpRatioCatOther

OtherveTotal)p(cRatioCatve





7. The bugs are then classified by order by positive category ratio maximum and other category ratio

minimum

8. The count for each category bugs are then made

III. EXPERIMENTAL RESULTS

Web based software is used in which the developer first registers by giving his/her preferences and type of

work. Two types of users are involved; Admin is responsible for sequence of algorithm operations as

described in the methodology where as developers receive a bug based on their expertise. Whereas the

developer can view the bugs assigned by the Admin based on the developer expertise.

A. Login Page

Fig. 2 Login Page

Figure shows the Login Page through which admin logs into the system and executes the algorithm.

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

26

B. Bug Collection View

Fig. 3 Bug Collection View

Figure shows the list of bugs for the Firefox browser which admin can view after login.

Here in this paper we are taking a sample of bugs from various products like Mozilla, Eclipse, etc.

C. Data Cleaning Algorithm Output

Fig. 4 Data Cleaning Output

Figure shows the data cleaning output. As shown in the result all stop words are removed from the bug

details. Hence the bug description will be free of stop words which will be more reliable and accurate for

eliminating the duplicate bug’s based on the concept words.

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

27

D. Tokenization and Weight Output

Fig. 5 Tokenization & Weight Output

Figure shows the Weight output as show in the matrix unique tokens are shown and then Weight is also

shown.

E. Score Computation Output

Fig. 6 Score Computation Output-1

Figure shows the Score computation output which contains the value computed for Inverse Document

Frequency (IDF), N value and Score.

Fig. 7 Score Computation Output-2

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

28

Figure shows the values of the score formula computed token wise namely Average D, Small N, B Value and

Document Magnitude

F. Duplicate Bug Detection

Fig. 8 Duplicate Bug Detection

Figure shows duplicate bug detection which has 3 values Main Bug Id, Bug Id and Group Id. After apply the

algorithm many bugs will belong to same group.

Fig. 9 Duplicate Bug Parameters

Figure shows the computation of duplicate bug parameters. As shown in the fig there is union sum, inter sum

and similarity if similarity is greater than threshold (0.6 or 0.7 or 0.8)

G. Classification Output

Once the duplicate bugs are detected using duplicate bug detection algorithm, only unique bugs are used for

classification. The classification of bugs are done based on set of categories using text mining practices,

results are described as below

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

29

Fig. 10 Category Words

Figure shows the category words. As shown in the fig there is category word and category to which the word

belongs.

H. Probability Computation

The probability computation results are shown in the tabular format

Fig. 11 Probability Computation

Figure shows the probability computation for the 2 bugs namely bug1 and bug2. The positive and negative

probability for each category also has been computed.

I. Contingency

Fig. 12 Contingency

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

30

Figure shows the contingency output. The positive others are the positive of other category and negative

others is the probable weight of other categories.

J. Enhanced Contingency

Fig. 13 Enhanced Contingency

Figure shows enhanced contingency which has the bug ids namely Bug1 and Bug2, Positive Category Ratio

and Other Category Ratio are also computed for each category name.

K. Classifier Information

Fig. 14 Classifier Information

Figure shows the classified information as shown in the fig each bug belongs to either single category or

multiple categories. Like this the output for huge number of bugs.

Fig. 15 Bug Classification

Figure shows the classification of bugs under various categories. As shown in the figure based on the

classification algorithm 2 bugs belong to design, 2 bugs belong to performance, 3 bugs belong to usability

and 2 bugs belong to user interface.

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

31

L. Developer Registration

Fig. 16 Developer Registration

Figure shows the registration process used by the developer. The developer provides various fields namely

First name, Last Name, Desired User Name, Password, Email Id and the category which the developer

mostly works on.

M. Developers Bug Assignment

Fig. 17 Bug Assignment

Figure shows the Bug Assignment in which the bug id is being assigned to a developer. Here Bug Id is 5 and

developer used is yousuf123.

N. Developers Bug

Fig. 18 Developers Bug

Figure shows the bug ids and details of the bugs assigned to the developers

ISSN: 2348 9510

International Journal Of Core Engineering & Management (IJCEM)

Volume 3, Issue 7, October 2016

32

IV. CONCLUSION

Duplicate Bug Detection is performed by doing a series of data mining operations where in duplicate bugs

are eliminated.

The bugs are also classified into various categories by computing the probability, contingency and enhanced

contingency and finally applying the classifier. This helps in assigning bugs to developer of that particular

category.

V. FUTURE SCOPE

This work can be extended to support more products. The Classification can be also done graphically using k

means along with applying the algorithm described in the paper for more accuracy.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proc. 28th Int. Conf. Softw. Eng.,

May 2006, pp. 361–370.

[2] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst, “Finding bugs in web

applications using dynamic test generation and explicit-state model checking,” IEEE Softw., vol. 36,no. 4,

pp. 474–494, Jul./Aug. 2010.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage: Recommenders for development-

oriented decisions,” ACM Trans. Soft. Eng. Methodol., vol. 20, no. 3, Bugs 10, Aug. 2011.

[4] C. C. Aggarwal and P. Zhao, “Towards graphical models for text processing,” Knowl. Inform. Syst., vol.

36, no. 1, pp. 1–21, 2013.

[5] Bugzilla, (2014). [Online]. Avaialble: http://bugzilla.org/

Karthik B S received Bachelor’s degree in Computer Science and Engineering from Jawaharlal Nehru

Technological University Anantapur in 2014. Pursuing Master’s in Computer Science and Engineering from

Jawaharlal Nehru Technological University Anantapur.

Thulasi Krishna S received Bachelor’s degree in Computer Science and Engineering from Jawaharlal

Nehru Technological University Hyderabad in 2005, M.E from Sathyabama University, Chennai and

pursuing PhD in Rayalaseema University, Kurnool. Working as Associate Professor in Kuppam Engineering

College, Kuppam. Also a member of MIST and MIAENG.

http://bugzilla.org/

