=)

Ty

International Journal of Core
Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

AN APPROACH FOR GROUPING AND CLASSIFICATION OF BUGS FOR SOFTWARE
ENGINEERING PRACTICES

Karthik B S
M.Tech Student, Dept. of CSE, Kuppam Engineering College
Kuppam, A.P, India
bashettykarthik@gmail.com

Thulasi Krishna S
Assoc. Prof, Dept. of CSE, Kuppam Engineering College
Kuppam, A.P, India
thulasikrishnal988@gmail.com

Abstract

In today’s world number of software products coming into market according to growing demands and to
serve human community. Each of the products has a list of known bugs or bugs created post release. In
order to improve the quality of the product and to have early release of few bugs to the end consumer the
product engineering, application development and Quality Assurance team sit together on a call, go
through each and every bug one by one and then assign a priority and take those bugs into the
development lifecycle of the product. In this paper algorithm is presented which performs the duplicate
bug detection using a series of data mining techniques like Data Cleaning, Tokenization, Weight
Computation, IDFT Computation, Score Computation and Duplicate Bug Detection. Classification of
bugs is also performed for various sets of categories by using contingency and enhanced contingency
algorithm. The Results show that the number of bugs to be discussed will get reduced in an automated
fashion and also duplicate bugs are grouped.

Keywords- Software Quality, Data Mining, Software Products, Software Engineering, Duplication,
Tokenization, Classification, Contingency.

I. INTRODUCTION
There are many works available in the literature related to the bug triage process. In the paper [1] software is
used in which the testing team and the development team can report bugs and perform various product
development related activities. The argument is made that the bug matching can be used by comparing the
words and then if words of the 2 bugs are greater than 75% percent the bugs are treated as similar.

In the paper [2] the most common errors like script errors are described and a way to generate a test case by
using automation frameworks is described. The algorithm does require the manual tester to write a script and

then run an automation test case to group the bugs which is a very tedious process.

21

mailto:bashettykarthik@gmail.com
mailto:thulasikrishna1988@gmail.com

=)

Ty

International Journal of Core
Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

In the paper [3] first a bug repository is created and then machine learning algorithms are applied to classify
the bugs and also architecture is developed to assign bugs to developers. However the algorithm suffers from
accuracy and bugs are at random assigned to developer which increases the fix time drastically because the
bug might be assigned to a developer who has little or no knowledge of the specific task.

In the paper [4] the vector space model is used for huge text data representation. It does not maintain the
ordering of the words therefore authors produces an approach in which distance between the words in the
graphs are used to intercept the information in terms of sentence structure of the underlying data.

1. PROPOSED FRAMEWORK
In the current approach it is assumed that we have a list of bugs across various products collected from open
repository. The bugs undergo a series of data mining steps like cleaning, token formation, weight
computation. Using the duplicate bug detection algorithm, duplicate bugs are eliminated there by using
probability, contingency and enhanced contingency similar bugs are categorized based on various categories.

Bug Collection ¢— Cleaning

4

Token Formation — Weight Computation

ll

Duplicate Bug Enhanced Weight
Detection Computation
Text Based

Classification

Fig. 1 Methodology for Duplicate Bug Detection

Figure shows the methodology for duplicate bug detection. As shown in figure series of steps are used for
detecting duplicate bugs to improve quality.

A. Bug Collection
The bugs for all the above products namely Software Engineering for any of product, Mozilla, open office
and eclipse. All the bugs will be collected as a set {Bug Id, Component, Priority, Type, Version, Status, and
Description}.

B. Cleaning
This module is used in order to remove stop words from the bug description. The stop words used in this
project are standard words given in the web mining forums. The stop words are namely able, about, above,
abroad, according, accordingly, across, actually, adj, after, afterwards, again, against, Ago, ahead, ain't, all,
allow, allows, almost, alone, along, alongside, already, also, although, always, am, Amid, amidst, among,
22

=)
International Journal of Core
Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

amongst, an and, another, any, anybody, anyhow, anyone, anything, anyway, anyways, anywhere, apart,
appear, appreciate, appropriate, are, aren't, around, as, a's, aside, etc.,

C. Token Formation
Token Formation is a process of converting the clean bug into a sequence of tokens. Each token is associated

with a bug {Tokenld, TokenName, Bugld, and Productid}.

D. Weight Computation
It is defined as the number of times a token appears in the review. The Weight will remove if any redundancy

exists. The Weight is stored in the format {Fregld, TokenName, Freq, Bugld, Productid}.

E. Score Computation
The Score computation is performed per token and is computed across the bugs by using the below formula

and is stored in the format {Scoreld, Weight, IDFT, Score, Bugld, Productld}.

score(D,Q) = zn: IDF(q;) f(q;,D).(k, +1) 5

=1 f(g,D)+k, (l-b+b).—/——
(@, D)+ (+b) avgdl

f = frequency

IDF = Inverse Document Frequency

D=length of document

avgdl = average document length in the text collection
kl1=1.2

b =0.75 IDF(qi)

Inverse Document frequenc_y (IDF) can be computed by using the below formulaé.
N —-n(g;,)+0.5

n(g,)+0.5
N = number of documents
n(q,) = number of documents containing q;

The similarity between 2 bugs d1 and d2 are measured using BM25F algorithm.

textual je.eripior (dy,d,) = BM25F(d,,d,)
Where,
d, =documentl
d, =document?2

IDF(q,) = log

F. Duplicate Bug Detection
The algorithm is used to detect the whether the two bugs are similar or not. The algorithm finds the inter sum

and union sum and then the bugs are found in terms of grouping.

23

1JCEM
International Journal of Core
Engineering & Management
ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

Consider the two bugs to be compared

Find the List of Concept words in Bug Al

Find the List of Concept words in Bug A2

Find the inter set between List of Concept Words in Bugs Al and List of Concept Words in Bugs A2.
Find the union set between List of Concept Words in Bugs Al and List of Concept Words in Bugs
A2.

6. Start from index1 till the end of Concept Words in the inter set
a. Obtain the kth Concept phrase K
b. Measure the text Weight of Bugs Al for K
C. Measure the text Weight of Bugs A2 for K
d. If tf(k,Al)>=tf(k,A2) measure the inter sum as below
intersum = intersum+tf (k, Al)
else
intersum = intersum+tf (k, A2)
e. k=k+1
f. Repeat the process from step a to step e until all tokens in the inter set is exhausted
7. Start from index1 till the end of Concept Words in the union set.
a. Obtain the k™ Concept phrase K
b. Measure the text Weight of Bugs Al for K
C. Measure the text Weight of Bugs A2 for K
d. If tf(k,Al1)<tf(k,A2) measure the inter sum as below
Uncommon sum = Uncommon sum +tf(k, A1)
Else
Uncommon sum = Uncommon sum +tf (k, A2)
k=k+1
Repeat the process from step a to step e until all tokens in the union set are exhausted
g. Measure Similarity = InterSum/Uncommon sum

agkrwdE

G. Classification
The algorithm is used post duplicate bug detection for classifying the bugs into various categories by
computing the probability there by measuring the contingency and sorting according to category ratio.

1. Obtains the bugs from the collection
2. For each of the bugs the probability is computed using the following formula
Number of words of category C.
P(IC,) = pr—
Total Number of Words

1<C, <4

3. Also the negative probability is also computed for each of the bug
4. The probability computation is computed and constructed as below

24

8.

-ae%
1JCEM
Interational Journal of Core
Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

FROBELLTY B0 CATWAE NEGATIVERRCRARLTY COUNT TOTALWCRDS

]
Probability- Positive Probability

BugID — ID of the Bug

CatName —c1, c2, c3 and c4

NegativeProbability — Finding the negative probability
Count- Number of words for the category

TotalWords- Number of words

The contingency is measure using the following

Total +ve Other, = p(C2)+ p(c3)+ p(c4)

Total -ve Other = p'(c2)+ p'(c3)+ p'(c4)

The enhanced contingency is measured using the following equation
+ve Cat Ratio ,= p(cl)+Total —ve Other

Other Cat Ratio,, = p'(cl)+Total +ve Other

The bugs are then classified by order by positive category ratio maximum and other category ratio

minimum
The count for each category bugs are then made

EXPERIMENTAL RESULTS

Web based software is used in which the developer first registers by giving his/her preferences and type of

work. Two types of users are involved; Admin is responsible for sequence of algorithm operations as

described in the methodology where as developers receive a bug based on their expertise. Whereas the

developer can view the bugs assigned by the Admin based on the developer expertise.
A. Login Page

Figure shows the Login Page through which admin logs into the system and executes the algorithm.

nter the User Name jADwK122
-

nier the Password i

Fig. 2 Login Page

25

—a.p
International Journal of Core
Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

B. Bug Collection View
P"w
' Bugs Information

BuglD | Bug Details

Firefox chosas wrong font for ganeric family with non-dafault font prafs

—

"o

Add StringBuffer::finishAtom to create an atom from 3 string buffer

L

Goagle Map Maker is missing elements
Firafox doasn't pass iframe test from bug 363109 comectly

A=

(¥,

[css3-images] Radial gradients show the wrong color when there are 2 100% color stops

I
|
|
|
)
\
|
)
|
|
I
|}
|
]
]
1

" Firefox doesn't pass iframe from bug 363109 correctly

Fig. 3 Bug Collection View

Figure shows the list of bugs for the Firefox browser which admin can view after login.
Here in this paper we are taking a sample of bugs from various products like Mozilla, Eclipse, etc.

C. Data Cleaning Algorithm Output
e

Bugs Information
Bug ID Bug Details
1 firefox choses wrong font generic family default font prefs

o

add stringbuffer finishatom create atom string buffer

3 google map maker missing elaments

- firefox doasn t pass iframe test bug cormectly

S ¢ss images radial gradients wrong color color stops end
5 firefox doasn t pass iframe bug corectly

Fig. 4 Data Cleaning Output
Figure shows the data cleaning output. As shown in the result all stop words are removed from the bug

details. Hence the bug description will be free of stop words which will be more reliable and accurate for
eliminating the duplicate bug’s based on the concept words.

26

iJCEM
International Journal of Core

Engineering & Management

ISSN: 2348 9510

International Journal Of Core Engineering & Management (1IJCEM)

Volume 3, Issue 7, October 2016

D. Tokenization and Weight Output

shown.

uuuunuuuu«-u—uuuug
-
[+]

Produce 10

L S S I SR

1

Tokan Name
firafox
choses
wWrong

font

Qenaric
family
default
prnfs

add
stringbuffer
finishatom
creasts
atom

etring
baffar
google

mano

!7
i

I S VN S S

Fig. 5 Tokenization & Weight Output
Figure shows the Weight output as show in the matrix unique tokens are shown and then Weight is also

E. Score Computation Output

Tokan Name 10 NVALLE
MNreafox o s
chosas O0.5642714304385563 -3
wrong 0.255272505103306 s
fom 0.5S64271430438562 -]
Qenernc O0.5642714304238563 6
family 0.564271430438562 13
default 0.564271430438563 L=
prefs 0.56427143043856) 1:3
aaa 0.56G4271430423856) <
strngbuffer 0.56427143093856) L
Minishatom 0.56927143033856> L]
create 0.563271430338%6) L
atom 0.963271430338%0D ©
string 0.5642714303305%563 o
buffer 0.5462271430438%02 L
ooople 0.56427143049385063 ©

Fig. 6 Score Computation Output-1

<orm

“40.13871689782676
30.2480906732828
33.2450443959954
34 459849981468701
30.24980906732628
30.2480906732820
30.2400906732629
20.24809067320820
31.20938321349072
31.20938321349072
31.2093832134072
31.2093832139072
31.20930321349072
31.20938321349072
31.20930321349072
33.32773100103457

Figure shows the Score computation output which contains the value computed for Inverse Document
Frequency (IDF), N value and Score.

Token Namse Ay.:ra-o-e ‘D

firefox 7.166666 666666 57
choses

RGeS 7.16666666666667
font 7.16666666666667
oy 7.16666666666667
family X

A 7.16666666666667
prafs 7.16666666566667
e 7.16686888864867
stringbuffer B

fimshatom 7+16666666666667
crante 7.16566666666657
stem 7.16865686686667
sinng

L far 7.16666666666667
google 7.16666666666667

Small N B Value

L e T o B T)

0
0.423203572828922
0.19145437882748
0.423203572828922
0,423203572828922
0.423203572828922
0.4232035728286922
0.423203572828922
0.423203572828922
0.423203572826922
0.423203572828922
0,423203572828922

‘Document Magnitude

N NN NG00

Fig. 7 Score Computation Output-2

27

&

i)JCEM

Interational Journal of Core
Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

Figure shows the values of the score formula computed token wise namely Average D, Small N, B Value and

Document Magnitude

F. Duplicate Bug Detection

Man Bog ID

bW WWwWUWNNNNRNMBSRMMMNM

?

-

WowhuwunowbhwiNnw

nn b

b

sroup TD

A

OO OWODOOONDODODODOOM

Fig. 8 Duplicate Bug Detection
Figure shows duplicate bug detection which has 3 values Main Bug Id, Bug Id and Group Id. After apply the
algorithm many bugs will belong to same group.

Union Sum

1
477.588397385397
425.761267943276
488.841071964802
475.109757078114
462.969215367913

Intersection Sum

1

0

0
40.1387189782676
33,2950443999954
40.1387189782676

Similarity

1

o

o

0.0821099561396054
0.0699733985773092

0.0866584621134477

Fig. 9 Duplicate Bug Parameters
Figure shows the computation of duplicate bug parameters. As shown in the fig there is union sum, inter sum
and similarity if similarity is greater than threshold (0.6 or 0.7 or 0.8)

G. Classification Output

Once the duplicate bugs are detected using duplicate bug detection algorithm, only unique bugs are used for
classification. The classification of bugs are done based on set of categories using text mining practices,

results are described as below

28

International Journal Of Core Engineering & Management (1IJCEM)

belongs.

iJ‘éE.M

International Journal of Core
Engineering & Management

ISSN: 2348 9510

Volume 3, Issue 7, October 2016

Category Word Category
quick response Ferformance
-t Ussbility
IDVvVaScript Usability
Iy Useyr INnterfacoce
ook and feeol Usability
database Desigr
design Design

load FPaerformances
reciTe Usability
font Usabblity

Iframe

Radial

Uzers Intesrface
Usability

Fig. 10 Category Words
Figure shows the category words. As shown in the fig there is category word and category to which the word

H. Probability Computation
The probability computation results are shown in the tabular format

Nnuuuu«»—»ag
Q

I. Contingency

L L

N NNNN

Category Name Court

Performance)
Usability

Usar Interfaccs
Deszign

User Interface

Performance

o 0o 0o 0 o N O

Leability

o

User Interfacce
Design 0
User Interface 0

NN N NN Y Y ow

Total Words Probability

Negative Probability
o |
22222222, 0. 777777777777778

-

I

Fig. 11 Probability Computation
Figure shows the probability computation for the 2 bugs namely bugl and bug2. The positive and negative
probability for each category also has been computed.

Usser Irterfacce
Design

Users Interface
Perfocrmance
Usability

Uzer Interfacce
Dezapn

User Interface

Negative Others Positive Others

b bbb obhuUww bW

QQ Q00000000

Fig. 12 Contingency

29

i JCEM

International Journal of Core

Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

Figure shows the contingency output. The positive others are the positive of other category and negative
others is the probable weight of other categories.

J. Enhanced Contingency
Enhance Matrix
By ID Category Nome | Pogitive Cat Ratio Others Cat Ratio
Performance
Usability
User interfacce
Design
Uger Interface

QITTITIININTNING

Performance
Usability

User Interfacce
Desicn

User Interface

PE B e b g pa aa

I e T I I T o

1
1
1
1
1
1
1
b

L R I N

Fig. 13 Enhanced Contingency
Figure shows enhanced contingency which has the bug ids namely Bugl and Bug2, Positive Category Ratio
and Other Category Ratio are also computed for each category name.

K. Classifier Information

Classifier Information
Bug ID +~ Cat Name
Usability
Performance
Usability
User Interfacce
Design
User Interface

Fig. 14 Classifier Information
Figure shows the classified information as shown in the fig each bug belongs to either single category or
multiple categories. Like this the output for huge number of bugs.

N NN NN =

Fig. 15 Bug Classification
Figure shows the classification of bugs under various categories. As shown in the figure based on the
classification algorithm 2 bugs belong to design, 2 bugs belong to performance, 3 bugs belong to usability
and 2 bugs belong to user interface.

30

iJCEM

International Journal of Core
Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

L. Developer Registration

Enter the First Name yousuf

Enter the Last Name pathan

Enter the Deswred User Name: yousuf123

Enter the Password, sevenne

Enter the Emaul ID: yousuf@gmail com
(“('magoyfy; User Interface ¥

Fig. 16 Developer Registration
Figure shows the registration process used by the developer. The developer provides various fields namely

First name, Last Name, Desired User Name, Password, Email Id and the category which the developer
mostly works on.

M. Developers Bug Assignment

User Information

User3d Login Type Category
3aQuib123

i Performance
ENT DS
D s Performance
sachinil23 * -
ool - User Interfacce
sratancoll3
- s i Usability
ouF123 -
YOUSUTILO 3 User Interfacce
Assign Bug
Select Bug ID Devsloper:
Store Bug
5 v yousuf123 > e

Fig. 17 Bug Assignment

Figure shows the Bug Assignment in which the bug id is being assigned to a developer. Here Bug Id is 5 and
developer used is yousuf123.

N. Developers Bug
ﬁ
Bugs Information
BuglD Gug Detads
H [css34mages] Radial gradients show the wrong color when there are 2 100% color stops
b Firefox doesnt pass iframe from bug 363109 comactly

Fig. 18 Developers Bug
Figure shows the bug ids and details of the bugs assigned to the developers

31

®

1JCEM
Interational Journal of Core

Engineering & Management

ISSN: 2348 9510
International Journal Of Core Engineering & Management (1IJCEM)
Volume 3, Issue 7, October 2016

IV. CONCLUSION
Duplicate Bug Detection is performed by doing a series of data mining operations where in duplicate bugs
are eliminated.
The bugs are also classified into various categories by computing the probability, contingency and enhanced
contingency and finally applying the classifier. This helps in assigning bugs to developer of that particular
category.

V. FUTURE SCOPE
This work can be extended to support more products. The Classification can be also done graphically using k
means along with applying the algorithm described in the paper for more accuracy.

REFERENCES
[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proc. 28th Int. Conf. Softw. Eng.,
May 2006, pp. 361-370.

[2] S. Artzi, A. Kie zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst, “Finding bugs in web
applications using dynamic test generation and explicit-state model checking,” IEEE Softw., vol. 36,no. 4,
pp. 474-494, Jul./Aug. 2010.

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage: Recommenders for development-
oriented decisions,” ACM Trans. Soft. Eng. Methodol., vol. 20, no. 3, Bugs 10, Aug. 2011.

[4] C. C. Aggarwal and P. Zhao, “Towards graphical models for text processing,” Knowl. Inform. Syst., vol.
36, no. 1, pp. 1-21, 2013.

[5] Bugzilla, (2014). [Online]. Avaialble: http://bugzilla.org/

Karthik B S received Bachelor’s degree in Computer Science and Engineering from Jawaharlal Nehru
Technological University Anantapur in 2014. Pursuing Master’s in Computer Science and Engineering from
Jawaharlal Nehru Technological University Anantapur.

Thulasi Krishna S received Bachelor’s degree in Computer Science and Engineering from Jawaharlal
Nehru Technological University Hyderabad in 2005, M.E from Sathyabama University, Chennai and
pursuing PhD in Rayalaseema University, Kurnool. Working as Associate Professor in Kuppam Engineering
College, Kuppam. Also a member of MIST and MIAENG.

32

http://bugzilla.org/

