

Study of Gender Discrimination at workplace

Dr. Shine David

MBA-HR (H.O.D.) IMS-DAVV Indore, India Shinelavi77@gmail.com

Divya Dhupiya

IMS-DAVV Indore, India divyadhupiya1518@gmail.com

Monica Raghuwanshi

IMS-DAVV Indore, India Raghuwanshi.monica10@gmail.com

Ritu Swami

IMS-DAVV Indore, India Ritu_sw@yahoo.co.in

Abstract

Gender Discrimination refers to a kind of prejudice or discrimination on the basis of one's gender. It was initially assumed that women were the only one affected by it. But in today's times there's no gender specificity in this matter. The sample size so taken in the study is 61. And the demographic factor is the gender, being male and female. All respondents majorly belong to the age group of 20-30. That is why in this study there's a major role of Gen X.

Index Terms—Glass ceiling effect, Gender Biasness, Equality.

I. Introduction

The Gender Discrimination in India specifically has been in existence since ages. Initially it was not about work but normal social aspects of life that shoed the symptoms of this type of

discrimination. The prejudices have taken place due the patria tic society in the country, later on prevailing due to the desire of being superior to the opposite gender. It leads to the development of such social culture that wanted to suppress the opposite gender. Later on specifically in working conditions it lead to several activities o gender biasness and harassment. It made working unequal on parts of opportunities and compensations.

The study therefore emphasis on the various issues faced by employees. As discrimination see no gender. Therefore the questions asked and hypothesis Formed are not gender biased but has taken into account problems faced by both the genders. It shows the point of difference between genders, regarding the treatment of the opposite one

II. Literature Review

There are many research papers available on topic of sex discrimination. And they all talk about various aspects of life with this type of discrimination like. The Education, Economy, Health care and workplace.

Brian Welle, Madeline E. Heilman(2005), ("Formal and Informal Discrimination against women at work") talks about the stereotypes that prohibit a female from being aggressive, tough and having a dominant nature. If they go against this prevailing culture they are often disapproved and face social penalties.

Katie Scire, (2008) "Gender Discrimination in the workplace", talks about the 'Glass ceiling' effect. This means that a woman cannot reach up to the higher level of management or the higher level of her career through breaking the glass ceiling. This term came into existence in the 1980's.

Every study mainly emphasized on the discrimination occurred to women but today there is no such barrier. Everyone is equally in danger of discrimination on part of anything that the management is biased about.

III. Objectives

The employees should not face any kind of discrimination for a stress free working environment with equal opportunities for growth in career. No discrimination leads to maximum job satisfaction and that leads to increased productivity and higher retention rate. The various objectives that should be defined for this purpose are:

- Equal growth opportunities
- Healthy peer relationships

- Fair reward and recognition
- Fair and equal policies for both genders
- Less stress level
- Less biasness
- Healthy competition
- Higher Retention
- Less prejudice at work place

IV. Methodologies

After the setting up of objectives the research methodology is taken care of. The questionnaire containing 29 questions were given to people that are currently working in different organizations. The data was then further analyzed for getting results using the SPSs software version 16.0. Then respective inferences were drawn.

A. Respondents Details

The Major age group was 20-30. Out of the sample size of 61 respondents. Out of which 35 were male and 26 were female.

B. Research Design

- Data collected was of primary nature as it was collected through the mode of questionnaire from employees of corporate life.
- Structured Questionnaire with close ended questions
- Likert scale with five point options were used ranging from strongly agree to strongly disagree.

C. Sampling Frame

- Sampling unit- Employees of corporate sector
- Sampling Size- 61

D. Tools used for analysis

It was done through (Statistical Package for Social Science) SPSS version 16.0. And Using Kaiser Mayer sample adequacy and independent 'T' test.

V. Data Analysis and Findings

The first thing applied was the Reliability test on the collected data for checking their consistency.

	Cronbach's Alpha Based	
	on	
Cronbach's	Standardized	
Alpha	Items	N of Items
.754	.748	29

Fig. 1: Reliability Statistics

The Cronbach's alpha or reliability hence came is 0.748. If the reliability comes near to 1 it is considered to be good. And if it is near to zero then the data is not reliable.

The independent sample t test is also done on the data. It is a hypothesis testing procedure which uses different samples for different kind of treatment and conditions. In this study it is comparing the male and female data in the opinion towards gender discrimination at work place. This is the group statistic table. It provides statistics for each of the two groups. In this study with sample size being 61, there are 35 people who are Male and 26 people who are Female. In the last 3 columns there is the mean, std deviation and the std error mean calculated. These are 29 different hypothesis created for the purpose and cause and results of gender discrimination.

Fig. 2: Group Statistics								
	Gender N Mean Std. Deviation							
VAR00002	Male	35	3.4000	1.14275	Mean .19316			
	Female	26	4.0000	.93808	.18397			
VAR00003	Male	35	2.3143	.99325	.16789			
	Female	26	1.6923	.83758	.16426			
VAR00004	Male	35	2.5429	1.09391	.18490			
	Female	26	2.1538	.92487	.18138			
VAR00005	Male	35	3.0000	.84017	.14201			
	Female	26	3.0769	1.16355	.22819			
VAR00006	Male	35	2.8857	.96319	.16281			
	Female	26	2.8077	1.16685	.22884			
VAR00007	Male	35	2.9714	1.04278	.17626			
********	Female	26	2.2308	.81524	.15988			
VAR00008	Male	35	2.7429	1.01003	.17073			
VAILOUUUU	Female	26	2.8462	1.22286	.23982			
VAR00009	Male	35	2.2571	.91853	.15526			
VAILOUUUUU		26		1.23101				
VAD00010	Female Male	35	2.6538	1.23101	.24142			
VAR00010			2.9429	.93562	.20475			
1/4000044	Female	26	3.3462		.18349			
VAR00011	Male	35	3.6571	.93755	.15847			
	Female	26	3.6538	1.16421	.22832			
VAR00012	Male	35	2.4286	.97877	.16544			
	Female	26	2.0385	1.03849	.20366			
VAR00013	Male	35	2.3714	.97274	.16442			
	Female	26	1.8846	.81618	.16007			
VAR00014	Male	35	2.2571	.85209	.14403			
	Female	26	1.5000	.70711	.13868			
VAR00015	Male	35	2.2000	.96406	.16296			
	Female	26	2.3077	1.22537	.24032			
VAR00016	Male	35	3.3714	.97274	.16442			
	Female	26	3.2308	1.17670	.23077			
VAR00017	Male	35	2.3429	.83817	.14168			
	Female	26	2.4615	1.02882	.20177			
VAR00018	Male	35	2.9143	1.12122	.18952			
	Female	26	2.1923	1.09615	.21497			
VAR00019	Male	35	3.1714	1.04278	.17626			
	Female	26	3.3077	1.08699	.21318			
VAR00020	Male	35	3.4000	1.11672	.18876			
	Female	26	3.0385	1.11286	.21825			
VAR00021	Male	35	2.7714	1.03144	.17434			
	Female	26	2.6538	1.16421	.22832			
VAR00022	Male	35	3.8571	.84515	.14286			
	Female	26	4.3077	.73589	.14432			
VAR00023	Male	35	3.1143	1.07844	.18229			
	Female	26	3.0385	1.11286	.21825			
VAR00024	Male	35	3.4571	1.06668	.18030			
	Female	26	4.0385	.95836	.18795			
VAR00025	Male	35	3.5714	.81478	.13772			
	Female	26	3.8077	.74936	.14696			
VAR00026	Male	35	3.2571	.88593	.14975			
	Female	26	3.3077	1.01071	.19822			
VAR00027	Male	35	2.9714	.98476	.16645			
	Female	26	2.9231	1.05539	.20698			
VAR00028	Male	35	3.1714	1.12422	.19003			
100020	Female	26	3.5385	1.12422	.22347			
VAR00029		35						
VAR00029	Male Fomalo		3.0857	1.03955	.17572			
VADOCOCC	Female	26	3.6154	1.06120	.20812			
VAR00030	Male	35	3.3429	1.05560	.17843			
	Female	26	3.5385	1.20767	.23684			

The second part is about the independent t test table i.e. divided into 2 blocks. First, being the

"Levene's test for equality of variances" for confirming that the assumptions of the following t test has been met or not. In this the "P Value" is taken to be 0.05 and the "Sig" value should be greater than or equal to this value for accepting the hypothesis.

Our test is 2-tailed. The column with title "t" gives the calculated value. And the column named "df" gives the degree of freedom associated with this test

		Levene's Test f	Independent Samples Test							
		Variar	t-test for Equality of Means 95% Confidence Interval of the						e interval of the	
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Differ Lower	Upper
VAR00002	Equal variances assumed Equal variances not	3.279	.075	-2.184 -2.249	59 58.356	.033	60000	.27466	-1.14960 -1.13389	05040
VAR00003	assumed Equal variances	1.169	.284	2.582	59	.012	.62198	.24091	.13992	1.10403
	assumed Equal variances not assumed			2.648	57.986	.010	.62198	.23488	.15181	1.09215
VAR00004	Equal variances assumed	2.138	.149	1.465	59	.148	.38901	.26556	14237	.92039
	Equal variances not assumed			1.502	57.946	.139	.38901	.25902	12948	.90750
VAR00005	Equal variances assumed	2.929	.092	300	59	.765	07692	.25636	58990	.43606
14000006	Equal variances not assumed Equal variances	1.274	.264	286	43.336	.776	07692	.26877	61883	.46499 .62423
VAR00006	assumed Equal variances not	1.274	.204	.286	47.723	.782	.07802	.27297	40010	.64278
	assumed Equal variances	3.878	.054	3.002	59	.004	.74066	.24674	.24693	1.23439
	assumed Equal variances not			3.112	58.816	.003	.74066	.23797	.26445	1.21687
VAR00008	assumed Equal variances assumed	2.125	.150	361	59	.719	10330	.28615	67589	.46929
	Equal variances not assumed			351	47.744	.727	10330	.29438	69528	.48869
VAR00009	Equal variances assumed	6.970	.011	-1.442	59	.154	39670	.27502	94701	.15360
	Equal variances not assumed			-1.382	44.375	.174	39670	.28704	97505	.18164
VAR00010	Equal variances assumed	2.362	.130	-1.412	59	.163	40330	.28556	97469	.16810
VAR00011	Equal variances not assumed Equal variances	1.150		-1.467	58.887	.148	40330	.27494	95346	.14687
VAR00011	Equal variances assumed Equal variances not	1.450	.233	.012	59 46.888	.990	.00330	.26917	53531	.54191
VAR00012	assumed Equal variances	.908	.345	1.500	59	.139	.39011	.26007	13030	.91052
	assumed Equal variances not			1.487	52.175	.143	.39011	.26239	13638	.91660
VAR00013	assumed Equal variances	1.733	.193	2.067	59	.043	.48681	.23553	.01552	.95810
	assumed Equal variances not			2.121	58.061	.038	.48681	.22947	.02749	.94614
VAR00014	assumed Equal variances assumed	.772	.383	3.684	59	.001	.75714	.20554	.34585	1.16844
	Equal variances not assumed			3.787	58.216	.000	.75714	.19994	.35696	1.15733
VAR00015	Equal variances assumed	2.318	.133	384	59	.702	10769	.28027	66851	.45313
	Equal variances not assumed			371	46.108	.712	10769	.29036	69211	.47673
VAR00016	Equal variances assumed	2.369	.129	.511	59	.612	.14066	.27546	41054	.69186
VAR00017	Equal variances not assumed Equal variances	1.579	.214	.496	47.773	.622	.14066	.28335	42913	.71045
	assumed Equal variances not	1.575	.214	481	47.279	.632	11868	.24654	61458	.37722
VAR00018	assumed Equal variances	.230	.633	2.511	59	.015	.72198	.28756	.14657	1.29738
	assumed Equal variances not			2.519	54.677	.015	.72198	.28659	.14757	1.29638
VAR00019	assumed Equal variances assumed	.015	.902	496	59	.622	13626	.27489	68632	.41379
	Equal variances not assumed			493	52.742	.624	13626	.27661	69113	.41861
VAR00020	Equal variances assumed	.620	.434	1.252	59	.215	.36154	.28870	21616	.93923
	Equal variances not assumed			1.253	54.122	.216	.36154	.28855	21695	.94002
VAR00021	Equal variances assumed	1.170	.284	.417	59	.678	.11758	.28212	44695	.68211
VAR00022	Equal variances not assumed Equal variances	.025	.875	.409	50.123	.684	.11758	.28727	45939	.69455
VARUUU22	Equal variances assumed Equal variances not	.025	.875	-2.173 -2.219	59 57.443	.034	45055	.20730	86536	03574
VAR00023	assumed Equal variances	.284	.596	.268	57.445	.790	.07582	.28303	49051	.64216
	assumed Equal variances not			.267	53.060	.791	.07582	.28436	49452	.64617
VAR00024	assumed Equal variances	1.862	.178	-2.197	59	.032	58132	.26465	-1.11089	05175
	assumed Equal variances not assumed			-2.232	56.810	.030	58132	.26045	-1.10290	05974
VAR00025	Equal variances assumed	.526	.471	-1.158	59	.251	23626	.20395	64436	.17183
	Equal variances not assumed			-1.173	56.277	.246	23626	.20141	63969	.16716
VAR00026	Equal variances assumed	.726	.398	208	59	.836	05055	.24359	53797	.43687
	Equal variances not assumed			203	49.762	.840	05055	.24842	54958	.44849
VAR00027	Equal variances assumed Equal variances not	.075	.785	.184	59	.855	.04835	.26287	47764	.57434
VARODOCO	Equal variances not assumed Equal variances	.008	.929	.182	51.848 59	.856	.04835	.26561	48467	.58137
VAR00028	Equal variances assumed Equal variances not	.008	.929	-1.254	53.613	.215	36703	.29275	95283	.21876
VAR00029	assumed Equal variances	.002	.962	-1.951	59	.056	52967	.27154	-1.07302	.01367
	assumed Equal variances not			-1.945	53.396	.057	52967	.27238	-1.07590	.01656
VAR00030	Equal variances	.303	.584	673	59	.504	19560	.29064	77717	.38596
	assumed Equal variances not			660	49.667	.513	19560	.29653	79131	.40010

According to the value analysis all the hypothesis are accepted except for 9th one with the value being 0.11 less than 0.05. Hence that hypothesis is rejected. Which is, whether there are equal opportunities for both the genders? Which does not exists according to the test. Hence that hypothesis is void. Else all the problems and causes were accepted through this study. So there is existence of gender discrimination

VI. Findings of the Study

- There is a presence of gender discrimination throughout corporate culture.
- That gender discrimination is leading to stress and reducing job loyalty.

Acknowledgment

We would like to thank our Mentor Dr. Shine David, The Head of Department of Human Resources, IMS-DAVV. Thanking for his immense support & guidance in preparing this research paper. With his immense knowledge and talent we were successful in evolving this study

References

[1] Subhash C. Kundu (2003) "Workforce diversity status: a study of employees reactions", Industrial management and data systems Vol. 103 Iss: 4, pp. 215-226

[2] KalyanienonSenandShivKuar, "WoenilIndia, how free?howequal", New Delhi, UNDAF

[3] Barbezat, D. A. & Hughes. J. W. (1990). Sex discrimination in labor markets: The role of statistical evidence: Comment, American Economic Review, Vol. 8 No. 1, 277-286.

[4] Hampton, M.B., & Ormerod, A.J. (1993). Do workers accurately perceive gender wage discrimination industrial and labour relations review, vol. 47. 1, pp. 36-49

[5] Kanazawa, S. (2005). is "discrimination" necessary to explain the sex gap in earnings? Journals of economic psychology, Vol. 26v, pp. 269-287

[6] Neumark, D., & McLenan, M. (1995). Sex discrimination and women's labor market outcomes. Journal of Human Resources, Vol. 30 No. 4, pp. 713-740

[7] Patrick Francois (1998). "Gender discrimination without gender difference: theory and policy responses ", Journal of public economics. Vol.8. Pp. 1-32

[8] Johnson, R. W., & Neumark, D. (1997). Age discrimination, job separations, and employments status of older workers: evidence from self-reports. Journal of Human

Resources, Vol. 32, No. 4, PP. 770-811

[9] Fitzgerald, L. F., Drassgow, F., Hulin, C. L., Galfand, M. J., & Magley, V. J. (1997). Antecedents and consequence of sexual harassment in organization: A test of an integrated model. Journal of applied Psychology, Vol. 82 No.3, pp.578-589

[10] Elizabeth K. Kelane(2009). "Gender Fatigue: The ideological dilemma of gender neutrality and discrimination in organizations". Canadian Journal of Administrative Sciences Vol. No. 26, pp.196-210

[11] Peterson, Trond & Thea Togstad (2006)." Getting the offer: Sex Discrimination in Hiring". Research in social stratification and mobility science direct vol. no. 24, pp. 239-257

[12] Mari Teigen(1999). "Documenting Discrimination: A study of Recruitment cases brought to the Norwegian. Gender Equality Ombud". Blackwell Publishers Ltd. Vol. 6, No. 2 pp.91-105

[13] Tomaskovic-Devey, Donald & Kevin Stanback. (2007), "Discrimination of Desegregation: Equal opportunity progress in US Pvt Sector Workplace since the civil rights act." The ANNALS of the American Academy of Political and Social Science 609: 49.

[14] Weeden, kim A. 2002. "Why do some occupations pay more than other? Social closure and earnings inequality in the United States." The American journal of sociology 108: 55-101.

[15] Wouters, Cas. (1991). "On status completion and emotion management." Journal of social history 24:699

[16] Williams, Eric. 1966 Capitalism and Slavery. Newyork: Capricon Books

[17] Yellin, Gean F. (1973). "Dubois" "Crisis" & "Women's Suffrage." The Massachusetts Review: 365-375

[18] Williams, Patricia. J. (1991). The alchemy of rase and rights Cambridge: Harvard University Press.

[19] Brian Welle, M. E. Heilman (2005). Formal and Informal Discrimination against women at work. Pp 24-30

[20] Katie Scire, (2008) ("Gender Discrimination in work place") Critical Feminist Web Paper-4