

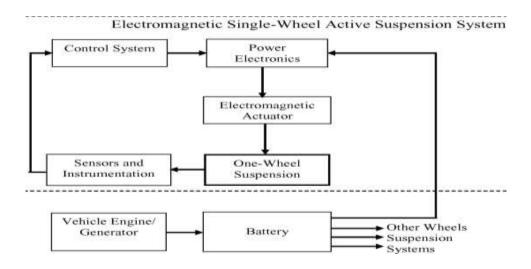
A DIFFERENTIAL GEARBOX ANALYSIS THROUGH FINITE ELEMENT METHODS

Dr.V.Naga Prasad Naidu¹, P.Hussain Babu²,T.Giri Kesava³ ¹Principal., Intell Engineering College, JNTUA, AP, India, Nagveluri @gmail.com @gmail.com ²Asst.Professor, ME Dept, Intell Engineering College, JNTUA, AP, India, phussainbabu@gmail.com ³Asst.Professor, ME Dept,Intell Engineering College, JNTUA, AP, India, kesavaatp@gmail.com

Abstract

Differential is a part of inner axle housing assembly, which includes the differential rear axles, wheels and bearings. The differential consists of a system of gears arranged in such a way that connects the propeller shaft with the rear axles. The following components consists the differential. Crown wheel and pinion, Sun gears, Differential casing. In the present work all the parts of differential are designed under static condition and modeled. Modeling and assembly is done in Pro/Engineer. The detailed drawings of all parts are to be furnished. The main aim of the project is to focus on the mechanical design and contact analysis on assembly of gears in gear box when they transmit power at speed 2400 rpm. Analysis is also conducted by varying the materials for gears, Cast Iron, and Aluminum Alloy.

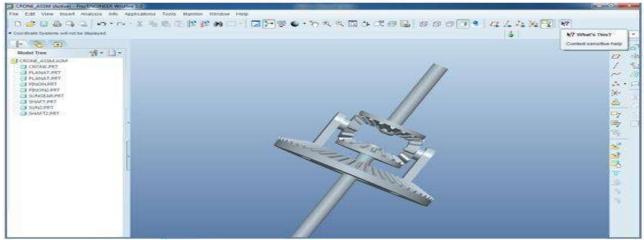
The analysis is conducted to verify the best material for the gears in the gear box at higher speeds by analyzing stress, displacement and also by considering weight reduction. The. Modeling is done in the Pro/Engineer. Analysis is done in Cosmos software.


Index Terms – gear box, pro engineer, cosmos software, sun gears, aluminium, cast iron

I. INTRODUCTION

Differential is used when a vehicle takes a turn, the outer wheel on a longer radius than the inner wheel. The outer wheel turns faster than the inner wheel that is when there is a relative movement between the two rear wheels. If the two rear wheels are rigidly fixed to a rear axle the inner wheel will slip which cause rapid tire wear, steering difficulties and poor load holding. The Electromagnetic Single – Wheel Active Suspension System

Supporting the Vehicle Engine is Shown below.



INTRODUCTIONOF PROE/ENGINERRING

Pro/ENGINEER is the industry's standard 3D mechanical design suit. It is the world's leading **CAD/CAM /CAE** software, gives a broad range of integrated solutions to cover all aspects of product design and manufacturing. Much of its success can be attributed to its technology which spurs its customer's to more quickly and consistently innovate a new robust, parametric, feature based model, because the Pro/E technology is unmatched in this field, in all processes, in all countries, in all kind of companies along the supply chains. Pro/Engineer is also the perfect solution for the manufacturing enterprise, with associative applications, robust responsiveness and web connectivity that make it the ideal flexible engineering solution to accelerate innovations. Pro/Engineer provides easy to use solution tailored to the needs of small, medium sized enterprises as well as large industrial corporations in all industries, consumer goods, fabrications and assembly, electrical and electronics goods, automotive, aerospace etc.

Model Designed In PRO/E

CADD Model of a Differential Gearbox Assembly by using Pro-E Wildfire 5.0v

International Journal of Core Engineering & Management (ISSN: 2348-9510)

Special Issue, NCETME - 2017, St. Johns College of Engineering and Technology, Yemmiganur

Mesh Information Details				
Total Nodes	39721			
Total Elements	21842			
Maximum Aspect Ratio	250.8			
% of elements with Aspect Ratio < 3	63.3			
% of elements with Aspect Ratio > 10	1.11			
% of distorted elements(Jacobian)	0			

II. BACKGROUND INFORMATION

	Name:	al_ alloy7475-	Name:	Malleable
	Model type:	t761 Linear Elastic Isotropic	Model type:	Cast Iron Linear Elastic
1	Default failure criterion:	Max von Mises Stress	Default failure	Isotropic Max von Mises
	Yield strength: Tensile	1.65e+008 N/m^2 3e+007	criterion: Yield strength:	Stress 2.75742e+0 08 N/m^2
	strength: Elastic	N/m^2 7e+010	Tensile strength:	4.13613e+0 08 N/m^2
Y	modulus: Poisson's ratio:	N/m^2 0.33	Elastic modulus: Poisson's	1.9e+011 N/m^2 0.27
	Mass density:	2600 kg/m^3	ratio: Mass	7300
	Shear modulus:	3.189e+008 N/m^2	density: Shear modulus:	kg/m^3 8.6e+010 N/m^2

Introduction to COSMOS:- Cosmos works is useful software for design analysis in mechanical engineering. That's an introduction for you who would like to learn more about COSMOS Works. COSMOS Works is a design analysis automation application fully integrated with Solid Works. This software uses the Finite Element Method (FEM) to simulate the working conditions of your designs and predict their behavior. FEM requires the solution of large systems of equations. Powered by fast solvers, COSMOS Works makes it possible for designers to quickly check the integrity of their designs and search for the optimum solution.

Cosmos Results:-

The vonmisses stress results obtained from cosmos software are shown below.

III. MAIN RESULT

Name	Туре	Min	Max	Name	Type	Min	Max
Stress1	VON: von Mises Stress	8.11597e- 007 N/mm*2 (MPa) Node: 33574	19.8068 N/mm^2 (MPa) Node: 20475	Stress1	VON: von Mises Stress	2.37779e-007 N/mm*2 (MPa) Node: 38267	3.57544 N/mm^2 (MPa) Node: 20365
	÷	•		And an an article and an article and an article and an article and	-	\$	
Inart assm	-2400 aluminiumally sta	tic land Strees S	drect 1				

Name	Туре	Min	Max	Nane	Type	Min	Max
Strain1	ESTRN: Equivalent Strain	1.52786e- 011 Element 20107	0.00025823 9 Element: 1069	Strain1	ESTRN Equivalent Stratn	9 901.374-013 Elan ant: 21285	1 1913/w-003 Eloment: 0003
And the lot of the lot		5		Version 2007 Annual Annua		\$	
2part_assm	-2400_aluminiumally_stat	ic_load-Strain	1-Strain1		art_assm-2400_castiron_tang	zential_load-strain-s	train1

IV. RESULTS

TANGENTIAL	Aluminum Alloy	Cast Iron
LOAD (N)	2922.51	3243.08
DISPLACEMENT (mm)	0.0241696	0.0100566
STRESS (N/mm ²)	3.19018	3.57544
STRAIN	4.1593e ⁻⁵	1.69558 e ⁻⁵
STATIC		
LOAD (N)	18143.3	37933.7
DISPLACEMENT (mm)	0.150063	0.11763
STRESS (N/mm ²)	19.8068	41.8212
STRAIN 0.000258239		0.000198329

V. CONCLUSION

In the present work designed a differential gear box for Ashok Leyland 2516M. Loads are calculated when the gears are transmitting different speeds 2400rpm, and different materials Aluminum Alloy and Cast Iron.

Structural and Frequency analyses are done on the differential gear box to verify the best material by taking in to account stresses, displacements, weight etc.

By observing the structural analysis results using Aluminum alloy the stress values are within the permissible stress value. So using Aluminum Alloy is safe for differential gear. When comparing the stress values of the two materials for speed 2400rpm, the values are less for Aluminum alloy than Cast Iron.

By observing the frequency analysis, the vibrations are less for Aluminum Alloy than other two materials since its natural frequency is less.

And also weight of the Aluminum alloy reduces almost 3 times when compared with Cast Iron since its density is very less. Thereby mechanical efficiency will be increased.

By observing analysis results, Aluminum Alloy is best material for Differential.

International Journal of Core Engineering & Management (ISSN: 2348-9510)

Special Issue, NCETME - 2017, St. Johns College of Engineering and Technology, Yemmiganur

REFERENCES

[1] Goyal S., Vaz A.: Modeling and Simulation of Dynamics of Differential Gear Train Mechanismusing Bond Graph, Proceedings of the 1st International and 16th National Conference onMachines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, Dec 18–20 2013

[2] Vlk F.: Technical automobile handbook, publisher Vlk, 1st edition, Brno 2003, ISBN 80-238-9681-4

[3]Svec V.: Machine parts and mechanisms – Mechanical gears, Prague, CVUT in Prague 2003, 174 p., ISBN 80-01-01934-9

[4] Michalec J. a kol.: Flexibility and strength I, Prague 1995, CVUT in Prague, 320 p., ISBN 8001013332

[5] Draou A.: A Simplified Sliding Mode Controlled Electronic Differential for an Electric Vehicle with Two Independent Wheel Drives, Energy and Power Engineering, 2013, 5, 416–421,

[6] Zebrowski Z., Miroslaw T.: Modeling and simulation of tractor differential mechanism, 2013
[7] Vrna T.: Use of finite element method in the development of truck chassis for example stress analysis of the rear axle beam, International conference of young scientists, Prague 2014,9.–10. 09.
2014, ISBN 978-80-213-2476-3