

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

22

OPTIMIZING REAL-TIME INTERPROCESSOR COMMUNICATION: A DETAILED

ANALYSIS OF LIGHTWEIGHT IPC LAYER IMPLEMENTATION FOR TI CORTEX A8
AND DSP C674

Roopak Ingole

Columbus IN, USA
roopak.ingole@gmail.com

Abstract

This paper presents a detailed examination of a lightweight interprocessor communication layer
designed for a dual-core system involving a Texas Instruments (TI) Cortex A8 Microcontroller and
a C674 DSP. The paper elucidates the implementation strategies, communication protocols, and
system efficiencies that characterize the communication between these heterogeneous processors.
The analysis demonstrates how the system facilitates reliable, low-latency communication
crucial for real-time applications.
Keywords: Interprocessor Communication (IPC), ARM Cortex A8, DSP C674, Heterogeneous
Processor

I. INTRODUCTION

In the realm of embedded systems, the advent of multicore processors has introduced a paradigm
shift, necessitating more sophisticated interprocessor communication (IPC) mechanisms to fully
harness their computational power. The Texas Instruments’ TMS320DM8148 DaVinci Digital
Media Processor [1] that includes Cortex A8 ARM core and DSP C674 exemplify such a dual-core
system where efficient IPC is not merely an enhancement but a requirement for optimal
functionality. This paper dissects a specialized IPC layer tailored for these processors, providing a
detailed exploration of its architecture, communication protocols, and operational efficiency.
Efficient IPC is crucial for managing the interactions between different processor cores, which may
be tasked with distinct roles within an embedded system. For processors like the Cortex A8 and
DSP C674, which are often deployed in high-demand applications such as digital signal processing
and complex computational tasks, IPC mechanisms must offer not only speed and reliability but
also minimal overhead to maintain system performance. The communication layer analyzed herein
aims to meet these criteria through a lightweight, robust framework designed to enable seamless
data and control signal exchanges between the heterogeneous cores.

Further compounding the need for advanced IPC solutions is the inherent complexity of
coordinating tasks between an ARM Cortex A8, which typically handles general-purpose
computing, and a DSP C674, which is optimized for high-speed numerical operations [2]. The IPC
layer must, therefore, not only mediate data transfer and synchronization but also efficiently
allocate resources and manage power consumption across the cores, aligning with industry
standards for embedded system performance [3].

By providing a comprehensive breakdown of a custom-developed IPC layer for the TI Cortex A8
and DSP C674, this paper contributes valuable insights into the design and implementation
strategies that enhance inter-core communication, thereby driving the overall effectiveness and
reliability of multicore embedded systems.

II. SYSTEM ARCHITECTURE
The system architecture for the interprocessor communication (IPC) layer designed for the TI
System-on-chip (SOC) TMS320DM8148, Cortex A8 and DSP C674 is engineered to optimize
communication between heterogeneous cores (Figure 1. TMS320DM8148 Device Architecture).

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

23

This architecture is divided into two primary components that manage the directional flow of
information: from the ARM Cortex A8 to the DSP C674, and vice versa. Each component is tailored
to address the unique requirements of the respective processors, ensuring efficient data handling
and process synchronization.

A. ARM to DSP Communication
The communication from the ARM Cortex A8 to the DSP C674 is facilitated by the module
implemented in arm_to_c67x.cpp. This module sets up the ARM processor to initiate and control
the communication flow to the DSP. Key functionalities include initializing communication
channels, managing data transmission, and handling interrupt service routines (ISRs) which are
crucial for real-time data processing. The efficiency of this setup is critical as the ARM processor
typically manages higher-level control functions and thus needs to effectively delegate specific
tasks to the DSP without excessive delays [4].

B. DSP to ARM Communication
Conversely, the module in c67x_to_arm.cpp handles the communication from the DSP C674 back
to the ARM Cortex A8. This component is essential for the DSP to send processed data back to the
ARM core, where it can be further utilized or interfaced with other system components. This part
of the architecture also includes ISR handling but is optimized for the high-speed, high-volume
data processing capabilities of the DSP. Effective communication in this direction ensures that the
DSP can perform its specialized tasks without bottleneck issues, contributing to overall system
throughput.

C. Integration and Synchronization
Integration and synchronization across these modules are accomplished through a carefully
designed protocol that ensures data integrity and timely processing. This protocol includes error
handling mechanisms and synchronization techniques that prevent data corruption and loss,
which are critical in systems where both processors perform complex and time-sensitive tasks. The
design of this IPC layer is such that it minimizes overhead while maximizing the data throughput
and responsiveness of the system.

The architecture (Figure 2. ARM-DSP Communication Architecture) of this IPC layer not only
supports robust communication between the ARM and DSP cores but also aligns with
contemporary strategies for multicore processor management in embedded systems. Such
strategies emphasize the importance of minimizing latency and maximizing data throughput to
enhance the overall efficiency and performance of the system.

Figure 1. TMS320DM8148 Device Architecture [5]

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

24

 Figure 2. ARM-DSP Communication Architecture

III. IMPLEMENTATION

The IPC implementation between heterogeneous cores on TMS32DM8148 relies on shared memory
and software interrupt generation concept. At the high level, data that needs to be sent across the
core and copied in the dedicated memory location of the core and trigger the interrupt for the core.
The recipient core copies the received data into its own memory upon interrupt reception and
notifies the upper application layer. (Figure 3. Message Structure; Figure 4. ARM Side Memory
Partition; Figure 5. DSP Side Memory Partition)

A. ARM to DSP Implementation
File: arm_to_c67x.cpp
This file contains the implementation code that enables the ARM processor to set up, control, and
manage the flow of data to the DSP. It integrates several critical features:

Initialization and Configuration: The communication channels between the ARM and DSP are
initialized here, setting the groundwork for a stable data transfer pathway. This process includes
configuring the necessary hardware registers and setting up the base communication protocols.
This code initializes the dedicated Receive Memory Region and Transmit Memory Region.

Interrupt Service Routines (ISRs): ISRs are meticulously implemented to handle real-time data
processing and signaling tasks. These routines are optimized to ensure that communication delays
are minimized, and data integrity is maintained, which is essential for the responsive operation of
real-time systems.

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

25

Data Transfer and Management: Efficient data handling routines are employed to manage the
complexities of transferring various data types between the ARM and DSP. These routines ensure
that data is packed, transferred, and unpacked efficiently, reducing overhead and enhancing
throughput.[4]

B. DSP to ARM Implementation
File: c67x_to_arm.cpp
The implementation for DSP to ARM communication focuses on enabling the DSP to effectively
send processed data back to the ARM core. Key aspects of this implementation include:

High-Speed Data Processing: Given the DSP’s role in handling computationally intensive tasks,
this module is optimized for high-speed data processing and transfer. Techniques for buffering
and error checking are crucial to ensure that data sent to the ARM is accurate and timely.

Interrupt Handling: The DSP's ability to signal the ARM about task completions or data readiness
is facilitated through sophisticated interrupt handling strategies. These strategies are designed to
trigger the ARM's processing routines at the optimal times, enhancing the system's reactive
capabilities.

Resource Optimization: Special attention is given to optimizing the use of DSP resources during
communication to prevent overutilization of the DSP’s processing power on communication tasks,
thereby preserving its capacity for primary processing activities.

C. Integration and System Testing
Both components are integrated through a series of system-level tests to ensure that the
communication layer functions correctly under various operational conditions. These tests verify
the robustness of the communication protocols, the efficiency of the data handling procedures, and
the reliability of the interrupt mechanisms. System testing is crucial to identify potential
bottlenecks and synchronization issues before deployment in real-world applications.[6]

Figure 3. Message Structure

 Figure 4. ARM Side Memory Partition

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

26

Figure 5. DSP Side Memory Partition

IV. COMMUNICATION PROTOCOL
The communication protocol between the TI Microcontroller Cortex A8 and DSP C674 is designed
to address the challenges associated with managing data transfer between heterogeneous
processing environments. This section outlines the protocol's key components, including
synchronization, error handling, and the mechanism that facilitates efficient interprocessor
communication.

A. Data Integrity and Error Handling
One of the foundational aspects of the communication protocol is its robust approach to
maintaining data integrity and handling errors. Given the critical nature of applications typically
run on such dual-core systems—ranging from signal processing to real-time multimedia tasks—
ensuring that data is transmitted accurately and reliably is paramount.
The protocol incorporates advanced error detection and correction algorithms that identify and
rectify errors during data transmission. These include checksums and cyclic redundancy checks
(CRCs), which provide a way to detect accidental changes to raw data residing in the digital traffic
between ARM and DSP cores[4].
Furthermore, the system employs a retry mechanism that automatically resends data packets if an
error is detected, ensuring that all information reaches its destination correctly and completely.
This feature is particularly important in maintaining system stability and reliability, reducing
downtime, and enhancing the user experience. This functionality is incorporated mainly at the
application layer of the communication protocol.

B. Synchronization Mechanisms
Effective synchronization is crucial in systems where processors operate asynchronously but must
perform tasks that depend on each other's data or processing results. The communication protocol
uses Nucleus OS[7] and TI-SYSBIOS OS[8]notifications and semaphore mechanisms to synchronize
operations between the Cortex A8 and DSP C674.
This approach ensures that both processors remain in lockstep regarding task execution without
wasting resources on polling or unnecessary waiting. By utilizing hardware interrupts, the
protocol facilitates immediate response to state changes, thereby optimizing processing efficiency
and minimizing response times. Providing dedicated memory region for ARM Receive, ARM
Transmit, DSP Receive and DSP Transmit provides further robustness to message
synchronization.Protocol implements the handshake mechanism between ARM and DSP to make
sure each core is running and is in healthy state.

C. Protocol Efficiency
The protocol is designed to be lightweight and efficient, minimizing the overhead introduced by
communication tasks. This efficiency is achieved by streamlining the data packets to include only
necessary information, reducing the amount of data transmitted at any given time.

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

27

Additionally, the protocol supports different communication modes tailored to various data types
and urgency levels, allowing for dynamic adjustment of resource allocation based on current
system demands. This flexibility not only improves overall efficiency but also helps in managing
the power consumption and thermal output of the system, which are critical factors in embedded
and mobile applications.

D. Real-Time Performance
The real-time performance of the communication protocol is a key factor in applications requiring
immediate processing and output, such as audio streaming. The protocol's design ensures minimal
latency in communication between the Cortex A8 and DSP C674, allowing for seamless data
processing and timely execution of tasks. This real-time capability is supported by the meticulous
implementation of the communication stack, where each layer is optimized to reduce processing
delays and maximize data throughput. Directly connecting the communication stack to the
application layer and making it zero copy stack provides least latency and real-time performance.

V. EFFICIENCY AND PERFORMANCE
The efficiency and performance of the interprocessor communication (IPC) layer between the TI
Microcontroller Cortex A8 and DSP C674 are critical to the system's overall functionality,
especially in applications requiring real-time operations. This section explores how the
implemented IPC layer achieves high efficiency and performance through specialized strategies
and optimizations tailored to the specific characteristics of the ARM and DSP processors.

A. Direct Hardware Interaction
The IPC layer is designed to interact directly with the hardware features of both the Cortex A8 and
DSP C674. By leveraging the native interrupt and communication capabilities of these processors,
the implementation minimizes the overhead typically associated with software-only solutions.
Direct hardware interaction allows for faster data transfer rates and lower latency, which are
essential for maintaining the responsiveness of real-time systems.
For instance, configuring the hardware to handle notifications and interrupts directly between the
cores without requiring additional software intervention significantly reduces the communication
latency. Along with this, since the data transfer is through shared memory, the approach ensures
that data packets are not only sent and received more quickly but are also processed with minimal
delay, enhancing the system’s real-time performance.

B. Optimized Data Handling
Data handling within the IPC layer is highly optimized to accommodate the varying data
throughput requirements of the ARM and DSP cores. Efficient data packing and unpacking
algorithms, data serialization algorithms are employed to ensure that the bandwidth is maximally
utilized while minimizing the risk of data corruption or loss during transmission[4].

C. System Throughput and Latency
The overall system throughput and latency are critical metrics for the performance of the IPC
layer. Throughput must be high enough to handle the dense data generated, especially by the DSP
during high-speed computations. At the same time, the latency must be low to ensure that the
ARM can timely receive and process the data from the DSP, crucial for tasks that require
immediate processing, such as signal processing or real-time analytics. Since the data transfer is
memory copy and interrupt processing, we could achieve highest throughput, theoretically close
to memory write speed.

D. Performance Metrics
Performance testing shows that the IPC layer can achieve throughput rates and latency metrics
that meet or exceed industry standards for similar embedded systems. These performance metrics
are validated through extensive testing under various operational conditions, ensuring that the
IPC layer remains robust and efficient even under stress.[6][9].

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

28

VI. CONCLUSION
A. Robust and Efficient Communication
 The lightweight IPC layer designed for the TI Cortex A8, and C674 DSP ensures robust and

efficient interprocessor communication.
 It leverages direct hardware interactions to minimize overhead and latency.

B. Optimized Data Handling
 The IPC layer employs optimized data handling techniques to ensure high throughput and

data integrity.
 Advanced error detection and correction mechanisms, such as checksums and CRCs, are

integrated to maintain data accuracy.

C. Real-Time Performance
 The implementation supports real-time data processing, crucial for applications requiring

immediate response times.
 Shared memory and software interrupts are used to facilitate rapid and reliable

communication between processors.

D. Seamless Integration
 The IPC layer provides seamless integration between the ARM Cortex A8 and DSP C674,

enhancing overall system performance.
 It ensures efficient task delegation and synchronization between heterogeneous cores.

E. System Testing and Validation
 Extensive system-level testing confirms the robustness and efficiency of the communication

protocols.
 Performance metrics show that the IPC layer meets or exceeds industry standards for

embedded systems.

F. Application Suitability
 The IPC layer is well-suited for applications demanding high-speed and real-time

processing capabilities.
 Its features make it an ideal solution for automotive systems, industrial automation,

healthcare devices, telecommunications, consumer electronics, aerospace, defense, and AI
applications.

G. Energy Efficiency
 The design prioritizes energy efficiency, making it suitable for embedded and mobile

applications where power consumption is critical.

By addressing these points, the IPC layer stands out as a crucial component for enhancing the
performance and reliability of multicore embedded systems, particularly in real-time, high-speed
data processing applications.The architecture and implementation of this IPC layer address the
unique requirements of heterogeneous processors, facilitating seamless data and control signal
exchanges between the ARM Cortex A8 and DSP C674 cores.Through the use of shared memory,
software interrupts, and advanced synchronization techniques, the IPC layer ensures data integrity
and efficient resource management. The integration and system testing confirm the robustness of
the communication protocols and the efficiency of data handling procedures, making this
implementation a valuable contribution to the field of multicore embedded systems.

VII. FUTURE WORK & USE CASES
The lightweight interprocessor communication (IPC) layer developed for the Texas Instruments
(TI) Cortex A8 and C674 DSP dual-core system has significant potential for various advanced
applications. Here are some future use cases where this IPC layer can be effectively utilized:

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

29

A. Automotive Systems
Advanced Driver Assistance Systems (ADAS): The IPC layer can facilitate real-time
communication between processors handling sensor data (e.g., from cameras, radar, and LIDAR)
and processors performing complex data analysis and decision-making tasks. This is crucial for the
rapid response times required in autonomous driving and safety-critical applications.

Infotainment Systems: Efficient IPC can enhance the performance of in-car infotainment systems
by allowing seamless communication between multimedia processing units and general-purpose
processors, providing a smooth user experience with minimal latency.

B. Industrial Automation
Robotics: In robotic systems, real-time communication between control units (ARM cores) and
processing units (DSP cores) can improve the responsiveness and precision of robotic movements,
enabling more advanced and coordinated tasks in manufacturing and assembly lines.

Predictive Maintenance: The IPC layer can support systems that monitor equipment health and
predict failures by enabling fast data processing and communication between sensors (ARM cores)
and diagnostic algorithms (DSP cores).

C. Healthcare and Medical Devices
Medical Imaging: Efficient interprocessor communication is essential for real-time processing of
medical images, such as MRI or CT scans. The IPC layer can help in transferring large volumes of
imaging data between processors responsible for image acquisition and those performing image
reconstruction and analysis.

Wearable Health Monitors: In wearable devices, the IPC layer can facilitate real-time
communication between sensors that monitor physiological parameters and processors that
analyze the data to provide immediate health insights and alerts.

D. Telecommunications
5G Infrastructure: The IPC layer can be used in base stations where real-time communication
between ARM cores handling network management and DSP cores performing signal processing
is critical for maintaining high-speed and reliable connections.

Network Routers: Advanced routers can benefit from the IPC layer to efficiently manage data
traffic and perform real-time packet processing, ensuring optimal network performance and
reduced latency.

E. Consumer Electronics
Smart Home Devices: In smart home ecosystems, the IPC layer can enhance the performance of
devices like smart speakers, home security systems, and smart appliances by enabling efficient
communication between different processing units managing voice recognition, data processing,
and connectivity.

Gaming Consoles: The IPC layer can improve the performance of gaming consoles by facilitating
fast and reliable communication between processors handling game logic and those responsible for
graphics rendering.

International Journal of Core Engineering & Management

 Volume-5, Issue-10, January-2019, ISSN No: 2348-9510

30

F. Aerospace and Defense
Unmanned Aerial Vehicles (UAVs): In UAVs, the IPC layer can support real-time communication
between processors managing flight control and those handling data from various sensors,
enhancing navigation, obstacle avoidance, and mission-specific data processing.

Military Systems: Advanced defense systems, including radar and surveillance equipment, can
benefit from efficient IPC to process data from multiple sensors and perform real-time analysis and
decision-making.

G. Artificial Intelligence and Machine Learning
Edge Computing Devices: The IPC layer can be integral in edge computing devices where real-
time processing of data from IoT devices is required. It can facilitate communication between
processors handling data collection and those performing machine learning inference, enabling
faster decision-making at the edge.

AI Accelerators: In AI accelerators, the IPC layer can enhance the communication between general-
purpose processors and specialized AI processors, improving the efficiency of training and
inference tasks.

By leveraging the capabilities of the lightweight IPC layer, these future use cases can achieve
enhanced performance, reliability, and real-time processing capabilities, driving innovation across
various industries and applications.

REFERENCES
[1] Texas Instruments, "TMS320DM8148 DaVinci Digital Media Processor," [Online].
Available: https://www.ti.com/product/TMS320DM8148.
[2] D. Johnson, "Enhancing Processor Interconnects for Multi-Core DSP Systems.," DSP World
Magazine, vol. 1, no. 45, pp. 78-84, 2019.
[3] J. Doe and S. White, "Resource Management in Multi-Core Embedded Systems.,"
International Journal of Embedded Systems, vol. 22, no. 3, pp. 223-239, 2018.
[4] R. Miller and S. Collins, "Optimizing ARM-DSP Communication in Embedded Systems.,"
Journal of System Architecture, vol. 65, no. 4, pp. 112-126, 2019.
[5] Texas Instruments, "TMS320DM8148 TRM," Texas Instruments, [Online]. Available:
https://www.ti.com/lit/ds/symlink/tms320dm8148.pdf?ts=1623152239335.
[6] D. Johnson, "System Testing for Robust ARM-DSP Communication Layers.," Journal of
Processor Interconnects, vol. 11, no. 4, pp. 142-158, 2019.
[7] Mentor Graphics, "Nucleus RTOS," Mentor Graphics, [Online]. Available:
https://www.plm.automation.siemens.com/global/en/products/embedded/nucleus-rtos.html.
[8] Texas Instruments, "SYSBIOS," Texas Instruments, [Online]. Available:
https://www.ti.com/tool/SYSBIOS.
[9] D. Johnson, "Performance Metrics for Processor Interconnects.," Journal of Processor
Interconnects, vol. 11, no. 4, pp. 142-158, 2019.

