
 
 
 
 

 

 

 

 

International Journal of Core Engineering & Management 

                  Volume-6, Issue-11, 2021           ISSN No: 2348-9510 

 

90 
 

EVALUATING DATA MODELING FLEXIBILITY: DYNAMODB'S KEY-VALUE 
STORE VS MYSQL'S RELATIONAL MODEL 

 
Girish Ganachari, Rameshbabu Lakshmanasamy 

Email: girish.gie@gmail.com 
 

 
Abstract 

 
Abstract: This paper reviews the flexibility of data modelling in an Amazon Dynamo DB key-
value store versus a My Structured Query Language (MySQL) relational model on schema design, 
scalability, and performance. It discusses the strengths and weaknesses of both models: in 
Dynamo DB, adaptive access to diversified structures in exchange for weak transaction 
management and relational integrity; and with MySQL, strengths in transaction management and 
relational integrity exchanged for weak adaptively to data structure. The analysis brings out the 
contexts in which each system excels, guiding database selection based on application needs and 
use cases.   
 
Keywords: Data Modelling, Amazon Dynamo DB, Key-Value Store, My Structured Query 
Language (MySQL), Relational Model, Flexibility, Scalability 

 

 
I. INTRODUCTION 

Data modelling refers to how data is handled or structured in modern applications and affects 
their performance and scalability. DynamoDB, being a NoSQL database, gives a flexible schema 
design; its key-value store makes changes to the data model easier and faster [1]. MySQL, on its 
part and being a traditional relational database, puts more emphasis on structured schema with 
strong transaction support [2]. Knowing the capabilities and constraints of these models enables 
organizations to select the appropriate database solution that best fits the needs of particular 
applications based on data handling requirements. 
 

 
Figure 1: Google trends using NoSQL versus SQL terms 

(Source: Beach, P.M., 2020) 
 
The graph shows the usage frequency of SQL vs. NoSQL, which has considerably increased from 
2005 to 2019. The trend using SQL around 2013 reflects a trend in flexible data modelling. This 
point to DynamoDB's schema flexibility and a key-value store advantage against the relational 
approach that MySQL has. 



 
 
 
 

 

 

 

 

International Journal of Core Engineering & Management 

                  Volume-6, Issue-11, 2021           ISSN No: 2348-9510 

 

91 
 

II. RESEARCH BACKGROUND  
1. Evolution of NoSQL and SQL Databases 
It underwent many changes until today, when a good number of models each suiting specific 
application requirements have been developed. Traditionally, SQL databases represented by 
systems such as MySQL have formed the backbone of data management because of structured 
storage, ACID (Atomicity, Consistency, Isolation, Durability) properties, and complex querying 
capabilities [3]. The relational model in MySQL is well-suited for structured schemas-based 
applications that need transactional integrity and relational data manipulation. With the need for 
flexible and scalable data management solutions, NoSQL databases, particularly key-value stores 
such as DynamoDB, were growing [4]. This kind of database is characterized by the architecture 
being schema-less and guaranteeing high throughput, processing large amounts of unstructured or 
semi-structured data. 

 

Figure 2: MySQL Benefits 
(Source: Self-Developed) 

 
2. Key-Value Store vs Relational Database: Definitions and Core Differences 
DynamoDB's model is a key-value store, whereas MySQL's model is a type of relational one and 
quite strictly leads to data consistency and integrity [5]. This review paper attempts to assess the 
kind of flexibility extended to data modelling between both DynamoDB and MySQL concerning 
their scalability and performance from different use case scenarios. Employing discussing the 
strengths and weaknesses of each model of the database, the paper gives practical 
recommendations for the choice of database within each specific set of application requirements, to 
ensure optimal performance and scalability. 

 

Figure 3: Real-Time Analytics on DynamoD 
(Source: Ali et al., 2019) 



 
 
 
 

 

 

 

 

International Journal of Core Engineering & Management 

                  Volume-6, Issue-11, 2021           ISSN No: 2348-9510 

 

92 
 

3. Aim and Objectives 
Aim: This review paper aims to assess the flexibility of data modelling in DynamoDB and MySQL. 
Objectives:  

 To assess the flexibility of data modelling in DynamoDB and MySQL 

 To compare scalability and performance in different use cases 

 To identify the strengths and weaknesses of each database model 

 To provide practical recommendations for choosing the appropriate database based on 
application requirements  

 
 
III. LITERATURE REVIEW  
1. Flexibility in Data Modeling: Schema Design and Adaptability 
Data modelling flexibility and database performance: according to the existing literature, there are 
visible distinctions between NoSQL and SQL database systems. Schema design and adaptability 
explained that MySQL, due to its non-flexible schema design, ensures data consistency; it enforces 
various constraints but more often than not, reflects a lack of adaptability to the fast-changing 
needs of the application [6]. In contrast, DynamoDB is schema-less by design. This allows for 
dynamic data structures that work quite well in applicative scenarios where the formats of data are 
subject to a lot of evolution [7]. However, the trade-offs come in the form of losing part of the 
intrinsic data validation that comes with relational models. 
 

 
Figure 4: Flexible Data Models 

(Source: Self-Developed) 
 

2. Scalability and Performance: Handling Large-Scale Data 
Performance metrics handling large-scale data reviews indicate that MySQL is very robust for 
transactional consistency but has problems with scalability since vertical scaling is used [8]. 
DynamoDB is horizontally scaled and stands at par in handling large volumes of data and high 
throughput, handling large-scale applications with varied data loads in a manner as required [9]. 
However, sometimes it gets affected by its eventual consistency model, which is not compatible 
with all scenarios. 
A study investigated the adaptability of DynamoDB in fast-changing data environments. High 
flexibility, as compared to MySQL, has been observed in it. Their research proves that DynamoDB 
can support frequent schema changes, part of applications that require high agility, like content 
management systems [10]. 
However, another study investigated scalability challenges in MySQL versus DynamoDB. They 
concluded that while MySQL vertical scaling can support consistent transactional performance, 
DynamoDB horizontal scaling excelled more in handling large-scale data across the distributed 



 
 
 
 

 

 

 

 

International Journal of Core Engineering & Management 

                  Volume-6, Issue-11, 2021           ISSN No: 2348-9510 

 

93 
 

system, though with some predictable eventual consistency issues in high-throughput scenarios 
11]. 
 
3. Use Case Scenarios: Application-Specific Strengths 
While relational databases like MySQL are preferred in applications involving complex queries 
and transactions heavy financial systems DynamoDB is very strong in scenarios that require high-
speed data retrieval and storage, like in gaming and IoT applications. This brings out the 
segmentation clearly on the need to settle for a database depending on specific application 
requirements. Epic Games runs DynamoDB to handle the real-time game data for Fortnite, 
providing fast access to millions of players. Another case is Nest, which uses DynamoDB while 
handling huge amounts of sensor data from smart thermostats, facilitating real-time changes at 
breakneck speeds. [10]. 
 
4. Literature Gap: Areas Lacking In-depth Analysis 
Areas needing further research there is inadequate research around the comparison of 
implementation challenges in the real world between DynamoDB and MySQL, particularly in the 
hybrid and multi-cloud cases [11]. This identifies the necessity of further research concerning the 
performance of these databases in different contexts of operation and how future use may be 
affected by emerging technologies [12]. 
 
 
IV. METHODOLOGY 
Data Collection: Secondary Data Sources and Selection Criteria 
The Secondary Data Sources and Selection Criteria used in this study include peer-reviewed 
journals, technical reports, industry white papers, and database documentation. The selection 
criteria were sources that had in-depth analyses with recent findings for relevance and accuracy 
[13]. 
 

 
Figure 5: Secondary Data Source 

(Source: Self-Developed) 
 
 



 
 
 
 

 

 

 

 

International Journal of Core Engineering & Management 

                  Volume-6, Issue-11, 2021           ISSN No: 2348-9510 

 

94 
 

V. RESULTS AND DISCUSSION  
1. Assessment of Flexibility in Data Modeling 
DynamoDB's schema-less nature allows for easy alterations and flexible data modelling, which is 
suitable for real-life applications featuring dynamic data structures; however, the downside is that 
the structure is more or less relational [14; 15; 16]. Correct schemas are one of SQL's great virtues. It 
provides high data integrity and allows complex queries, while MySQL's relational design is 
defined, as less flexible. Real-life examples show that generally, startups like DynamoDB because 
of the latter's flexibility, and big enterprises go for MySQL simply because they need the former 
[17]. 
 
2. Comparison of Scalability and Performance in Different Use Cases 
As DynamoDB has the feature of capacity scaling, it can automatically partition data, making it 
suitable for high-volume situations like Netflix [18]. Adding ACID compliance by nature in 
MySQL also brings some overhead that may not support scaling perfectly. Most businesses 
needing a giant throughput with large data volumes often opt for DynamoDB, much like the 
gaming platform, whereas MySQL is the choice for applications needing complex transactions and 
data integrity, like financial systems. 

 
Figure 6: Dynamodb Auto Scaling 

(Source: Farooq et. al., 2017) 
 
3. Identification of Strengths and Weaknesses of Each Database Model 
DynamoDB can easily scale and straightforwardly use the system. Still, it offers weak support for 
transaction capabilities, which is the reason why it cannot efficiently use this database for 
applications within the financial sector. MySQL strongly supports transactions, and shows 
consistency in data, with this facility provided; it is a complicated system when implementing 
scaling. E.g., shopping Websites may prefer to use MySQL which "coils it" to ensure efficient 
reliable transactions, and social media applications would like to use Dynamo DB for quick access 
to data [19]. 
 
4. Practical Recommendations for Choosing the Appropriate Database 
It is highly recommended to use DynamoDB for highly dynamic fast-changing data structures. 
MySQL would be the proper choice if applications needed complex querying and high 
transactional strong consistency [20]. This can be guided by consideration of the requirements at 
the application level concerning scalability needs versus data integrity [21]. A new tech startup 
would use DynamoDB for quick iterations, while established banks would most probably have 
used MySQL to provide secure transactions with reliability. 
 
 



 
 
 
 

 

 

 

 

International Journal of Core Engineering & Management 

                  Volume-6, Issue-11, 2021           ISSN No: 2348-9510 

 

95 
 

 
Figure 7: SQL vs. NoSQL Trends 

(Source: Özsu et. al., 2020) 
 

The graph contrasts SQL vs NoSQL frequency over time. The usage of the term NoSQL grew 
considerably from 2005 to 2019 and crossed SQL usage Frequency about 2013, which showed a 
trend towards flexible data modelling. This puts a greater emphasis on DynamoDB schema 
flexibility and key-value store advantage over MySQL's relational approach. 
 
 
VI. CONCLUSION  
DynamoDB's Strengths: This review thus presents evidence that DynamoDB is better at evolving 
data models and has superior scalability for high-traffic scenarios, while MySQL is better in 
complex transactions and data integrity.  
Database Selection Based on Needs: From the results therefore, one can strongly infer that the 
selection of a database must be based on application needs; for example, using DynamoDB for 
cases of dynamic scaling or MySQL for transaction-heavy systems. 
Limitations: 

 Eventual Consistency: DynamoDB’s eventual consistency can be limiting. 

 Scalability: MySQL’s vertical scaling is inadequate for large data volumes. 

 Schema Rigidness: MySQL’s fixed schema restricts flexibility. 
 
 
VII. RECOMMENDATIONS 
For choosing between DynamoDB and MySQL, consider DynamoDB for flexible schema design, 
high scalability, and rapid development. Choose MySQL where data integrity, complex 
transactions, and relational querying come first [22]. Some best practices are the use of indexing 
and partitioning for high performance in DynamoDB and normalizing schemas with indexing in 
MySQL for efficient querying [23]. Performance tuning and monitoring are regular activities 
required in both databases for efficient usage of resources and cost [24] 
 
 

VIII. FUTURE WORK  
Hybrid models of databases that integrate NoSQL and SQL for flexible and versatile data 
management are some of the future researches. Another important area involves investigating the 
impact of emerging technologies like AI-driven optimization and quantum computing on data 
modelling flexibility [25]. Case studies on real-world implementations and long-term performance 
analysis will go a long way in ascertaining practical application experience and sustainability of 
the different database models within varying environments. 
 
 
 



 
 
 
 

 

 

 

 

International Journal of Core Engineering & Management 

                  Volume-6, Issue-11, 2021           ISSN No: 2348-9510 

 

96 
 

REFERENCES 
1. Gupta, A., Tyagi, S., Panwar, N., Sachdeva, S. and Saxena, U., 2017, October. NoSQL databases: 

Critical analysis and comparison. In 2017 International conference on computing and 
communication technologies for smart nation (IC3TSN) (pp. 293-299). IEEE. 

2. Tang, E. and Fan, Y., 2016, November. Performance comparison between five NoSQL 
databases. In 2016 7th International Conference on Cloud Computing and Big Data (CCBD) 
(pp. 105-109). IEEE. 

3. Ali, W., Shafique, M.U., Majeed, M.A. and Raza, A., 2019. Comparison between SQL and 
NoSQL databases and their relationship with big data analytics. Asian Journal of Research in 
Computer Science, 4(2), pp.1-10. 

4. Malik, A.N., 2018. Exploring Multi-Model Features of Redis. 
5. Lee, J., Wei, T. and Mukhiya, S.K., 2018. Hands-On Big Data Modeling: Effective database 

design techniques for data architects and business intelligence professionals. Packt Publishing 
Ltd. 

6. Garba, M. and Abubakar, H., 2020. A comparison of nosql and relational database management 
systems (rdbms). Kasu Journal Of Mathematical Sciences, 1(2), pp.61-69. 

7. Amghar, S., Cherdal, S. and Mouline, S., 2018, June. Which NoSQL database for IoT 
applications? In 2018 international conference on selected topics in mobile and wireless 
networking (mownet) (pp. 131-137). IEEE. 

8. Lu, J. and Holubová, I., 2019. Multi-model databases: a new journey to handle the variety of 
data. ACM Computing Surveys (CSUR), 52(3), pp.1-38. 

9. Sahatqija, K., Ajdari, J., Zenuni, X., Raufi, B. and Ismaili, F., 2018, May. Comparison between 
relational and NOSQL databases. In 2018 41st international convention on information and 
communication technology, electronics and microelectronics (MIPRO) (pp. 0216-0221). IEEE. 

10. Hassan, M.A., 2021, December. Relational and nosql databases: The appropriate database 
model choice. In 2021 22nd International Arab Conference on Information Technology (ACIT) 
(pp. 1-6). IEEE. 

11. Keshavarz, S., 2021. Analyzing Performance Differences Between MySQL and MongoDB. 
12. Siddiqa, A., Karim, A. and Gani, A., 2017. Big data storage technologies: a survey. Frontiers of 

Information Technology & Electronic Engineering, 18, pp.1040-1070. 
13. Messaoudi, C., Fissoune, R. and Badir, H., 2018. A performance evaluation of NoSQL databases 

to manage proteomics data. International Journal of Data Mining and Bioinformatics, 21(1), 
pp.70-89. 

14. Moita, P.R.A., 2019. Modular and Adaptive Key-Value Storage Systems (Doctoral dissertation, 
NOVA University of Lisbon). 

15. [15] Sutton, J. and Austin, Z., 2015. Qualitative research: Data collection, analysis, and 
management. The Canadian journal of hospital pharmacy, 68(3), p.226. 

16. Palinkas, L.A., Horwitz, S.M., Green, C.A., Wisdom, J.P., Duan, N. and Hoagwood, K., 2015. 
Purposeful sampling for qualitative data collection and analysis in mixed method 
implementation research. Administration and policy in mental health and mental health 
services research, 42, pp.533-544. 

17. Roh, Y., Heo, G. and Whang, S.E., 2019. A survey on data collection for machine learning: a big 
data-ai integration perspective. IEEE Transactions on Knowledge and Data Engineering, 33(4), 
pp.1328-1347. 

18. Farooq, H., Mahmood, A. and Ferzund, J., 2017. Do NoSQL databases cope with current data 
challenges. Int J Comput Sci Inform Secur (IJCSIS), 15(4). 



 
 
 
 

 

 

 

 

International Journal of Core Engineering & Management 

                  Volume-6, Issue-11, 2021           ISSN No: 2348-9510 

 

97 
 

19. Fernandez Canon, D., 2016. Evaluation of a data-model and a free-schemamodel for converting 
production shop floor datainto information using Relational and NoSQLdata management 
systems. 

20. Mihai, G., 2020. Multi-model database systems: The state of affairs. Economics and Applied 
Informatics, (2), pp.211-215. 

21. Petrovska, J. and Ajdari, J., 2019. Amazon’s Role in the Field of Cloud Relational And noSQL 
Databases: A Comparison Between Amazon Aurora and DynamoDB. ISCBE 2019, p.214. 

22. Singh, K., 2015. Survey of NoSQL Database Engines for Big Data (Master's thesis). 
23. Özsu, M.T., Valduriez, P., Özsu, M.T. and Valduriez, P., 2020. NoSQL, NewSQL, and 

polystores. Principles of distributed database systems, pp.519-558. 
24. Venkatraman, S., Fahd, K., Kaspi, S. and Venkatraman, R., 2016. SQL versus NoSQL movement 

with big data analytics. International Journal of Information Technology and Computer 
Science, 8(12), pp.59-66. 

25. Chaudhry, N. and Yousaf, M.M., 2020. Architectural assessment of NoSQL and NewSQL 
systems. Distributed and Parallel Databases, 38(4), pp.881-926. 

26. Zhu, S., 2015. Creating a NoSQL database for the Internet of Things: Creating a key-value store 
on the SensibleThings platform. 

27. Beach, P.M., 2020. A Methodology to Identify Alternative Suitable NoSQL Data Models via 
Observation of Relational Database Interactions.Top of Form 


