

International Journal of Core Engineering & Management

 Volume-6, Issue-10, 2020 ISSN No: 2348-9510

39

FOCUSING ON JDK COMPATIBILITY FOR STERLING FILE GATEWAY
UPGRADES: HANDLING INSTALLATION ERRORS

Rajendraprasad Chittimalla

MS in Information System Security
Software Engineer - Team Lead, Equifax Inc

rajtecheng4mft@gmail.com

Abstract

Sterling File Gateway requires a proper matching JDK (Java) version; otherwise, the upgrade will
fail with the errors mentioned below. The application will not come up and will end up with the
same Java error. Always check the compatible JDK version and upgrade Java. This article details
the critical role of JDK compatibility in Sterling File Gateway upgrades and presents a solution to
avoid common errors and ensure a smooth upgrade process. Ensuring JDK compatibility not only
prevents upgrade failures but also mitigates potential security vulnerabilities that arise from
using outdated software. Additionally, this article considers automated solutions to verify JDK
versions prior to the upgrade, reducing the possibility of human error and operational downtime.
It expresses how integrating solutions into the upgrade process, organizations can enhance system
stability while streamlining their operational workflow.

Keywords: Sterling File Gateway, JDK compatibility, Java upgrade, error troubleshooting, system
integration

I. INTRODUCTION

Sterling File Gateway is a vital component in managing file transfers within enterprise systems. Its
efficiency and reliability depend on a seamless upgrade process. One common issue during
upgrades is the compatibility between Sterling File Gateway and the Java Development Kit (JDK)
[1]. It is important to note that compatibility between Sterling File Gateway and the Java
Development Kit (JDK) has long been considered a key aspect of ensuring successful upgrades, as
mismatches often result in failures and system disruptions [2]. An improper JDK version can cause
the upgrade to fail, leading to significant downtime and operational disruptions.
Over 60% of system upgrade failures in enterprise environments are due to software
incompatibilities. In a JDK setting, version mismatches are a leading cause therein [3]. Ensuring the
right JDK version aligns with the gateway's requirements is crucial for maintaining system
integrity and performance. Upgrading the Sterling File Gateway (SFG) often involves careful
consideration of Java Development Kit (JDK) compatibility to ensure a smooth installation process.

II. LITERATURE REVIEW
The transition from one Java Development Kit (JDK) version to another has been a topic of
significant research, especially in the context of enterprise systems like Sterling File Gateway. Jens
Dietrich et al. (2014) highlight the challenges Java developers face in maintaining compatibility,
noting that mismatches in JDK versions can lead to critical failures during software upgrades [1].
These findings underscore the importance of precise version matching to avoid operational
disruptions.

International Journal of Core Engineering & Management

 Volume-6, Issue-10, 2020 ISSN No: 2348-9510

40

In a study on software upgrade failures, Tudor Dumitras (2009) found that over 60% of upgrade
failures in enterprise environments are due to software incompatibilities, with JDK mismatches
being a primary cause [2]. This statistic reinforces the necessity for rigorous pre-upgrade checks
and validation processes.
Jens Dietrich et al. (2014) discusses the critical nature of maintaining version alignment between
JDK and enterprise systems, such as Sterling File Gateway, to avoid upgrade failures.
Randeep Singh and colleagues (2020) emphasize the need for frameworks to improve Java system
quality through refactoring, highlighting that a significant number of issues arise from outdated or
incompatible JDK versions [3]. Their research suggests that proactive measures in version
management can mitigate upgrade failures.
Security implications of using outdated JDK versions are also well-documented. Li Gong discuss
the security challenges in Java application development, noting that running unsupported or
outdated JDK versions can expose systems to vulnerabilities and exploits [4]. Ensuring that
upgrades include the latest security patches is crucial for maintaining system integrity.
The migration of legacy systems to newer platforms poses unique challenges. Sikender
Mohsienuddin Mohammad (2020) explores the difficulties in migrating legacy Java desktop
applications to collaborative web environments, emphasizing the need for thorough testing and
validation during such transitions [5].

III. PROBLEM STATEMENT: ENSURING JDK COMPATIBILITY
Sterling File Gateway upgrades require a matching JDK (Java Development Kit) version.
Incompatibility causes upgrade failures, leading to several issues.

1. Compatibility Issues
When the JDK version does not match the required specifications, the upgrade process encounters
critical errors. These errors prevent the proper installation of necessary files and configurations,
resulting in an incomplete or failed upgrade.

For example:

Figure 1: Showcasing Error

These errors occur because the upgrade script cannot locate specific JDK files, indicating a
mismatch between the expected and actual JDK versions.

2. System Downtime
Incompatibility issues lead to significant system downtime. As Singh et al. (2020) noted, JDK
mismatches often cause significant downtime and operational challenges during upgrades,
reinforcing the need for compatibility checks. During the upgrade process, the application may fail
to start, rendering the system unusable until the issue is resolved. This downtime disrupts business
operations, affecting productivity and service delivery. [3]

International Journal of Core Engineering & Management

 Volume-6, Issue-10, 2020 ISSN No: 2348-9510

41

Figure 2: Showcasing Error

The system's inability to find the necessary Java executable leads to failed security updates,
causing the application to remain offline.

3. Increased Administrative Overhead
Frequent JDK-related upgrade failures increase administrative overhead. IT teams must allocate
additional time and resources to troubleshoot and rectify these errors. This repetitive manual
intervention diverts resources from other critical tasks, reducing overall efficiency.
An example scenario could be that of an IT staff repeatedly facing issues where the upgrade script
fails due to missing or incompatible JDK files. They will need to manually identify and resolve
these discrepancies, which can be time-consuming and error-prone.

4. Security Risks
Incompatible JDK versions pose security risks. When upgrades fail, the system may run outdated
Java versions, exposing it to vulnerabilities and potential exploits. Ensuring the correct JDK
version is crucial for maintaining the security and integrity of the system. [4]
Here's an example of an associated error

Error '127' updating java security providers in /install_dir/jdk
Figure 3: Showcasing error

Failure to update Java security providers leaves the system vulnerable to security threats, as
critical security patches are not applied.

5. Data Migration Issues
Upgrading Sterling File Gateway with an incompatible JDK can cause data migration issues. [5]
Ensuring that existing logs and data are accurately transferred to the new version is critical. Data
migration issues can lead to data loss or corruption, impacting log analysis and reporting.
An example of this impact could be a situation where during an upgrade, if the JDK version does
not match, the migration scripts may fail, leading to incomplete or corrupted data migration. This
impacts the integrity of logs and data, causing potential loss of critical information.

IV. PROPOSED SOLUTION: AUTOMATING JDK COMPATIBILITY CHECKS
Implement automated scripts to verify JDK compatibility before initiating the upgrade. These
scripts check the existing JDK version against the required version and validate all necessary files.
To avoid these errors, begin by consulting the SFG release notes for compatibility information.
Ensure that your environment is updated with the correct JDK version before initiating the
upgrade. Additionally, it’s advisable to back up your current configuration and data to prevent
loss in case of an installation failure.
Common installation errors may include classpath issues or conflicts between different JDK
versions. Address these by checking environment variables and confirming that the JAVA_HOME
path points to the correct JDK installation. For complex errors, refer to the error logs for detailed
diagnostics, and consult IBM’s support resources if needed.
By focusing on JDK compatibility and following these best practices, you can minimize installation
issues and achieve a successful upgrade of your Sterling File Gateway.

International Journal of Core Engineering & Management

 Volume-6, Issue-10, 2020 ISSN No: 2348-9510

42

1. Automating The Processes
An example of how the JDK compatibility checks can be automated is as follows:

Figure 4: Automating process script

This script ensures all necessary JDK files are present and the version is correct before proceeding
with the upgrade.

2. Automated Upgrade Process
Develop an automated upgrade process to handle JDK updates and Sterling File Gateway
upgrades seamlessly. This minimizes manual intervention and reduces the risk of errors.
Here is an example script for the same:

Figure 5: Script for automating upgrades

This script automates the download, backup, and installation processes, ensuring a smooth
upgrade.

International Journal of Core Engineering & Management

 Volume-6, Issue-10, 2020 ISSN No: 2348-9510

43

3. Post-Upgrade Verification

Figure 6: Service status configuration script

This script checks the service status and configuration to confirm the upgrade's success.
Continuous Integration and Continuous Deployment (CI/CD)
Implement CI/CD pipelines to automate the entire upgrade workflow, from code integration to
deployment and testing. [6] This ensures consistency, reduces manual errors, and accelerates the
upgrade process.
For instance, here is an example pipeline to consider:

Figure 7: CI/CD pipeline overview

This pipeline automates the build, test, and deployment stages, ensuring a reliable upgrade
process.

4. User Training and Documentation
Provide comprehensive training and detailed documentation to help users adapt to new features
and functionalities. This minimizes user frustration and ensures a smooth transition.

International Journal of Core Engineering & Management

 Volume-6, Issue-10, 2020 ISSN No: 2348-9510

44

V. KEY LIMITATIONS

1. Complexity of Automation
Implementing automated processes requires technical expertise. Organizations must invest in
skilled personnel and regular updates to maintain the automation scripts.

2. Initial Setup and Configuration
The initial setup of CI/CD pipelines and automation tools is resource-intensive. Accurate
dependency management is critical to avoid upgrade failures and system disruptions.

3. Security Risks
Automation can introduce new security risks . Even though automation reduces errors, it also
introduces new security risks, as highlighted in prior research by Gong (2009), who emphasized
the vulnerabilities exposed by outdated JDK versions. Ensure automated scripts and tools are
secured to prevent unauthorized access and modifications.

4. Downtime During Upgrades
Despite automation, some downtime is unavoidable. Plan upgrades during low-traffic periods and
communicate with users to mitigate downtime's impact.

5. Integration with Legacy Systems
Integrating automated processes with legacy systems can be challenging. Custom solutions and
thorough testing are necessary to ensure seamless integration. [7]

VI. RESEARCH IMPACT
The research conducted in this article has several significant impacts on the incompatibility errors
in Sterling File Gateway upgrades.
The upgrade scripts developed as part of this research are meticulously designed to precisely
identify and address compatibility issues between JDK versions and Sterling File Gateway. The
importance of maintaining JDK compatibility in large-scale systems, as highlighted by Alves
(2011), forms the core foundation of this study, ensuring that Sterling File Gateway upgrades are
successful and secure.
This precision drastically reduces the incidence of upgrade failures due to JDK mismatches, which
have been a recurrent issue causing significant downtime. Automating the verification of JDK
compatibility, these scripts ensure that the upgrades proceed only when the system meets all
prerequisites. This directly contributes to higher success rates in upgrades, reducing the iterative
cycles of trial and error that typically plague system updates.
The automated scripts for JDK compatibility checks and upgrade processes minimize the potential
for human error, which is often a significant factor in upgrade failures. Automation ensures that
each step is executed consistently, following the exact parameters set for successful upgrades. With
continuous integration and continuous deployment (CI/CD) pipelines, the research introduces a
systematic approach to upgrades, which standardizes the deployment process across various
environments. This consistency not only enhances the reliability of upgrades but also streamlines
the process, making it more predictable and manageable.
One of the primary challenges during upgrades is managing installation errors related to JDK
versions. It’s crucial to verify that the JDK version installed matches the requirements specified by

International Journal of Core Engineering & Management

 Volume-6, Issue-10, 2020 ISSN No: 2348-9510

45

the SFG upgrade documentation. Mismatched versions can lead to failures, such as unexpected
application crashes or functionality issues.
It is also worth mentioning that the automated upgrade process ensures that security patches and
updates are applied as soon as they are available, thereby maintaining the security integrity of the
Sterling File Gateway. This is particularly crucial given the sensitivity of the data handled by the
gateway.
The introduction of scripts that automate compatibility checks and upgrades has streamlined the
entire upgrade process, reducing the time and resources required to achieve successful upgrades.
This efficiency not only impacts IT operations but also aligns with broader organizational goals of
agility and reduced operational costs.
Ultimately, the methodologies and scripts developed provide a foundation for further research
and development in the area of system upgrades. They offer a replicable model that can be
adapted and extended to other systems and applications, potentially leading to broader
innovations in upgrade technology.

VII. CONCLUSION

 JDK Compatibility is Critical: Ensuring compatibility between the Sterling File Gateway and
the correct version of the JDK is fundamental for a smooth upgrade process. Failing to do so
results in significant installation errors and operational disruptions.

 Automating JDK Compatibility Checks: Implementing automated scripts to verify JDK
versions before an upgrade minimizes the risk of compatibility-related errors. These scripts
ensure that all prerequisites are met, reducing the chances of installation failures.

 Minimizing System Downtime: Automation of the upgrade process, combined with CI/CD
pipelines, allows for more consistent and reliable upgrades. This not only reduces the manual
intervention required but also decreases downtime during upgrades.

 Security Risk Avoidance: Upgrading the JDK in conjunction with Sterling File Gateway ensures
that the system is protected with the latest security patches. Failure to update leaves the system
exposed to vulnerabilities, making it essential to maintain JDK compatibility for security
purposes.

 Achieving Administrative Efficiency: Automated upgrade processes reduce the administrative
overhead by minimizing human error, leading to more efficient resource allocation and quicker
resolution of upgrade issues.

 Challenges and Limitations: Despite the benefits, the initial setup of automated processes
requires technical expertise and significant resources. Moreover, ongoing maintenance and
integration with legacy systems remain challenges that need careful planning and continuous
updates to stay aligned with system requirements. [8].

REFERENCES
1. Alves, A. (2011). OSGi in Depth. Manning Publications. ISBN 1638351384.
2. Hammond, J. (1999). Building JavaBeans™ with Rose J. Rose Architect Visual Modeling with

UML, Summer Issue, 35-40.
3. Baker, M., Apon, A., Buyya, R., & Jin, H. (2000). Cluster Computing and Applications.

September 18.
4. Dietrich, J., Pearce, D., & Pollock, L. (2014). What Java Developers Know About Compatibility,

And Why This Matters. Empirical Software Engineering, 21(3), 1-10.

International Journal of Core Engineering & Management

 Volume-6, Issue-10, 2020 ISSN No: 2348-9510

46

5. Dumitras, T., & Narasimhan, P. (2009). Why Do Upgrades Fail and What Can We Do About It?
In 10th International Middleware Conference, Urbana, IL, USA.

6. Singh, R., Kalra, A., & Singh, B. (2020). A Framework to Improve the Quality of a Java System
by Performing Refactoring. International Journal of System of Systems Engineering, 10(4), 1-10.

7. Gong, L. (2009). Java Security: A Ten Year Retrospective. Annual Computer Security
Applications Conference. IEEE.

8. Murínová, J. (2015). Relatório técnico, Masarykova Univerzita Fakulta Informatiky.
9. Cagle, R., Kristan, M., & Rice, T. (2015). DevOps for Federal Acquisition. IEEE Software

Technology Conference.
10. Mohammad, S. M. (2016). Continuous Integration and Automation. International Journal of

Creative Research Thoughts (IJCRT), 4(3), 938-945.

