

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

93

GUIDE TO SUBSCRIBE GOOGLE PUB/SUB IN SALESFORCE USING CLOUD RUN

Chirag Amrutlal Pethad
Stores and Services

PetSmart Inc.
Phoenix, Arizona, USA

chiragpethad@live.com, cpethad@petsmart.com

Abstract

The document outlines the integration of Google Cloud Pub/Sub with Salesforce using a push
mechanism by creating an Apigee Proxy API that subscribes to the Pub/Sub and then publishes the
messages to a Salesforce REST Api endpoint. Key steps include setting up a Pub-Sub topic, setting
up a Cloud Run function in Python language, creating an Apex REST service in Salesforce to
handle incoming messages and implementing OAuth 2.0 for secure authentication. It emphasizes
security considerations, testing, and best practices for error handling and scalability, ultimately
enhancing Salesforce applications' responsiveness and reliability through real-time messaging.

Keywords: Event Bus, Event Driven Architecture, Google PUB-SUB, Integration, Push vs Pull,
REST API, Limits, Scalability, Event Replay, Cloud Run.

I. INTRODUCTION

Salesforce Event Bus [10], also known as the Platform Events [11] framework, is a powerful tool
for enabling event-driven architectures within Salesforce. However, there are several limitations to
consider when using Salesforce Event Bus. The integration of Google Cloud Pub/Sub [3] with
Salesforce enables businesses to harness the power of real-time data processing and avoid the
limitations associated with Salesforce Event Bus. This white paper provides a step-by-step guide to
setting up and subscribing to Google Pub/Sub [2] [4] in Salesforce using Push method leveraging
the capabilities of both platforms for improved operational efficiency, seamless and efficient flow
of information. The objective is to enable real-time messaging and event-driven architecture in
Salesforce by leveraging GCP Pub/Sub for asynchronous communication. This integration allows
Salesforce to automatically receive messages pushed from Pub/Sub topics, ensuring efficient and
scalable processing of events.

II. IDENTITY PROVIDERS AND THEIR ROLE IN USER PROVISIONING
Salesforce Event Bus, also known as the Platform Events framework, is a powerful tool for
enabling event-driven architectures within Salesforce and integrating with external systems.
However, there are several limitations to consider when using Salesforce Event Bus as follows.

1. Event Delivery

 Salesforce attempts to deliver events in order, but it is not guaranteed.

 Salesforce may deliver events more than once. So consumers or subscribers must handle
potential duplicate events.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

94

2. Event Retention and Replay

 Salesforce retains the events for only 72 hours, so consumers may miss some or all events if
they are not online during that duration.

 Salesforce does provide event replay option, but it is limited to last 24 hours only. For any
missed events older than 24 hours but within 72 hours retention duration, consumers
handle the gaps manually.

3. Event Size and Volume

 The maximum Event size including the payload and metadata is 1MB.

 Depending on the Salesforce edition there are limits on the number of events that can be
published and delivered within a 24 hour duration.

 There are limits on the number of events that can be published per transaction per hour.
Maximum of 1000 events per transaction. Per hour limit varies by Salesforce edition.

4. Event Processing Limits

 Each event can have maximum of 50 subscribers which includes Apex triggers, flows, and
external systems as well.

 Salesforce imposes limits on number of long running concurrent apex transactions, which
can impact event processing performance.

5. Governor Limits and Error Handling

 Apex triggers on platform events are subject to Salesforce governor limits, such as CPU
time, heap size, and SOQL/DML limits.

 Errors in triggers can cause event processing failures. Proper error handling and retry
mechanisms must be implemented.

6. Integrations with External Systems

 Integrating with external systems can introduce latency and reliability issues. Ensure that
external systems can handle the volume and frequency of events.

 Calling external APIs from Salesforce is subject to API call limits and rate limits imposed by
the external system.

7. Maintenance and Upgrades

 Salesforce Platform upgrades and changes to Salesforce API versions can impact event
processing and functionality. Ensuring compatibility with the Salesforce changes is
required.

8. Monitoring and Debugging

 Salesforce provides limited built-in tools for monitoring platform events. Additional third-
party tools or custom monitoring solutions may be needed for comprehensive monitoring
and alerting.

 Debugging issues with event processing can be challenging due to asynchronous nature
and potential delays in event delivery.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

95

III. OVERVIEW OF GOOGLE CLOUD PUB-SUB
Google Cloud Pub/Sub [4] is a fully-managed real-time messaging service that allows you to send
and receive messages between independent applications. It decouples services that produce events
from services that process events, enhancing scalability and reliability. Some of the key features [3]
of Google Pub Sub are 1) It handles high throughput and low latency messages. 2) Helps ensure
reliable message delivery with at-least once delivery. 3) It integrates with various GCP services
and external systems.

IV. OVERVIEW OF GOOGLE CLOUD RUN
Google Cloud Run is a fully managed compute platform that automatically scales stateless
containers. It is designed to simplify the process of deploying and running containerized
applications in the cloud without the need to manage servers or infrastructure. Cloud Run
integrates seamlessly with other Google Cloud services, allowing you to build event-driven
architectures. For example, you can trigger a Cloud Run service in response to events from Google
Cloud Pub/Sub, Firebase, or Google Cloud Storage. It’s key features include.

1. Serverless
Cloud Run abstracts away the underlying infrastructure, allowing you to focus solely on your
application code. It automatically handles scaling, load balancing, and infrastructure management,
providing a true serverless experience.

2. Scalability
Cloud Run automatically scales your application up or down based on incoming traffic. It can scale
down to zero when there is no traffic, ensuring that you only pay for what you use.

3. Language and Framework Agnostic
Since Cloud Run runs containers, it supports any programming language or framework that can be
containerized. This flexibility allows developers to use the tools and languages they are most
comfortable with.

4. Event Driven Architecture
Cloud Run integrates seamlessly with other Google Cloud services, allowing you to build event-
driven architectures. For example, you can trigger a Cloud Run service in response to events from
Google Cloud Pub/Sub, Firebase, or Google Cloud Storage.

5. REST Endpoints
Cloud Run exposes your application as a fully managed HTTP/HTTPS endpoint. This makes it
easy to build and expose web applications, APIs, or microservices that can be accessed over the
internet.

V. OVERVIEW OF SALESFORCE APEX
Salesforce provides an object oriented programming language called Apex [1] to perform code
driven customizations on Salesforce platform to meet business requirements. It enables developers
to execute flows and transaction control statements on the Salesforce platform. It also enables
creation of web services, email services, and implement complex business processes. It is highly
scalable, robust and supports integrations with external systems via REST and SOAP architecture.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

96

VI. IMPLEMENTATION PLAN
The implementation plan involves setting up a Google Cloud Pub/Sub topic, configuring service
accounts and permissions, and implementing Java application to subscribe to the Pub/Sub topic
and then publish / forward those messages to Salesforce endpoint. The process includes the
following steps.

1. Salesforce Setup
In this step we create a Connected App and create a REST Web Service [5] to receive the Pub Sub
Event messages in Salesforce for further processing.

2. Setting up Google Cloud Run
In this step we create the Cloud Run Service, we develop and deploy the Cloud Run Function that
connects to the Salesforce REST Web Service.

3. Setting up Google Cloud Pub-Sub
In this step we create a Pub-Sub Topic with a Push Subscription that delivers message to the Cloud
Run Service.

VII. STEP BY STEP IMPLEMENTATION
Here is the detailed step by step instruction to implement all the necessary steps in Salesforce and
Google Cloud for the integration to be successful.

1. Salesforce Setup
We start by setting up a new User / Service account in Salesforce with appropriate permissions.
We also create an APEX REST Web Service to allow external systems to communicate / integrate
with Salesforce.

A. Setup a new Service Account User.

 Log into your Salesforce instance with your Administrator account.

 Go to Setup and Select Users under Users section.

 Click on New User button and provide below detail.

 First Name: Service (or name indicating the account’s purpose).

 Last Name: Account

 Email: Provide a valid email address (for notifications and password reset).

 Username: Unique username across all Salesforce instances globally.

 User License: Select Salesforce as the License.

 Profile: Assign a relevant profile that provides necessary permissions for one of the
standard profile or create a custom profile according to your business requirements.

 Check the “Generate new password and notify user immediately” option and Click Save.

 Assign additional Permissions using Permission Sets to grant specific access for the Service
account based on business requirements.

B. Setup Connected App [9]

 In the setup menu Select the App Manager.

 Click on New Connected App button.

 Fill in the required fields such as App Name, API name, and Contact email.

 Select the Enable OAuth Settings option.

 Set the Callback URL to “https://login.salesforce.com/services/oauth2/callback”.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

97

 Add “Full” option for the required OAuth Scopes.

 Save the connected app and capture the Consumer Key and Secret for Google Cloud
Integration.

C. Create and Configure Salesforce APEX REST Web Service to receive Pub Sub Messages

 In the setup menu Select Apex Classes [1].

 Click New to create a new Apex Class as follows.

Figure 1: Apex REST service to receive and process incoming messages.

 Grant access to the Service account for the Apex Class.

2. Setting up Google Cloud Run Service
In this step, we create a Cloud Run Service, Develop and Deploy a Cloud Run Function in Python
that integrates with the Salesforce APEX REST endpoint to forward the Pub Sub message to
Salesforce for further processing.

A. Create a Cloud Run Service

 Navigate to Cloud Run in the GCP Console.

 Click “Create Service” and select the appropriate project.

 Choose a Region close to your Salesforce instance considering the latency.

 Deploy a simple HTTP server as a placeholder to initialize the service.

B. Create Cloud Run Function

 We will create a function in the Python language that will subscribe to the Pub Sub
messages. You can choose any other language e.g. Node.js that are supported by Cloud
Run.

 The function will parse the incoming Pub Sub message.

 The function authenticates with Salesforce using OAuth2.0.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

98

 And the function will make an HTTP POST call to the Salesforce APEX REST Api to
publish the message to Salesforce App for further processing.

 The function uses Salesforce Connected App Credentials (Consumer Key and Secret) to
authenticate and obtain the access token to call the REST Api.

 The Cloud function will be developed as follows.

Figure 2: Python Cloud Run Function

C. Deploy the Function to Cloud Run

 Deploy the function to Cloud Run and ensure the service is configured to receive HTTP
POST requests as follows.

Figure 3: G-Cloud Command to deploy the Cloud Run Service.

3. Setting up Google Cloud Pub Sub [2]
We also create a Pub Sub Topic and a Push Subscription that triggers the Cloud Run function /
service endpoint.

A. Create a Pub Sub Topic

 Navigate to Pub/Sub section in Google Cloud Console.

 Click “Create Topic”.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

99

 Enter a unique Topic ID such as “MyPubSubTopic”.

 Un-Select the “Add a default subscription” option.

 Click “Create”.

B. Create a Push Subscription [6]

 Navigate to Subscriptions under Pub/Sub section.

 Click “Create Subscription”.

 Enter a unique Subscription ID such as “MySalesforcePubSubSubscription”.

 Select the Pub Sub Topic we created in previous step.

 Select “Push” as the Delivery Type.

 Enter the Cloud Run Service URL for the Endpoint URL. E.g. “https://your-service-
url.run.app”.

C. Setup IAM Permissions

 Navigate to IAM and Admin section in Google Cloud Console.

 Create a new Service account under Service Accounts section.

 Navigate to IAM section and Grant “Cloud Pub/Sub Subscriber” and “Cloud Run
Invoker” role / access to the Service account / principal.

4. Testing the Deployment
And finally, we Publish a test message to validate end to end processing of the message by
monitoring Cloud Run Logs and Salesforce Debug logs.

A. Publish a Test Pub Sub Message

 We can use Google Cloud Console or G-Cloud CLI to publish a test message to the Pub Sub
Topic. Below is the G-Cloud CLI Command example.

Figure 4: G-Cloud Command to Publish a Pub Sub Message on a Topic name “salesforce-update”.

B. Monitor Cloud Run Logs

 Monitor and Check Cloud Run logs to make sure the message was successfully received by
the Cloud Run function and then successfully processed and forwarded to Salesforce APEX
REST Api.

C. Monitor Salesforce Developer Console Logs

 Monitor and Check Salesforce Developer Console logs or Debug Logs under setup to make
sure the REST Api was successfully invoked and the message was successfully received
and processed.

VIII. LIMITATIONS AND CHALLENGES
When using Cloud Run to subscribe to Google Cloud Pub/Sub and publish to a Salesforce REST
API, there are several challenges and limitations to consider. Here’s a breakdown of potential
issues you might face:

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

100

1. Cold Start and Latency

 Cold Start Delays: Cloud Run instances may experience a delay when spinning up if there
hasn't been recent activity. Since Pub/Sub pushes messages to Cloud Run in an event-
driven fashion, if the service hasn't been invoked recently, there can be cold start delays,
causing latency in processing Pub/Sub messages.

 Latency Impact on Salesforce API calls: Any delay in Cloud Run startup could increase the
time it takes to make API calls to Salesforce, potentially causing timeouts or performance
bottlenecks, especially in high-throughput scenarios.

2. Rate Limiting and Throttling

 Salesforce API Limits: Salesforce imposes strict rate limits on API requests (e.g., daily
limits, concurrent API call limits). If Cloud Run processes a high volume of messages from
Pub/Sub, you may exceed Salesforce API limits, causing errors and requiring complex
retry logic.

 Exponential Back off or Retries: Implementing exponential back off for retries when
Salesforce rate limits are hit can be tricky, and poorly handled retries may compound the
problem by adding load.

3. Authentication Challenges

 OAuth2.0 Tokens: Connecting Cloud Run to the Salesforce REST API typically requires an
OAuth 2.0 token. Properly managing token refresh (due to token expiration) and securely
storing client credentials is crucial. Implementing token management in a server less
architecture like Cloud Run can be challenging, especially when scaling across multiple
instances.

 Service Account Permissions: The Cloud Run service account needs proper IAM
permissions to access Pub/Sub and other Google Cloud services, and security needs to be
carefully managed to avoid over-provisioning of permissions.

4. Handling Pub Sub Message Ordering

 Out of Order Processing: Pub/Sub does not guarantee message ordering by default unless
you use message ordering with a specific ordering key. This could result in out-of-order
data being sent to Salesforce, which may require additional logic to handle correctly in your
Cloud Run service.

 Duplicate Message Processing: Pub/Sub can deliver duplicate messages in rare cases, so
idempotency is important when sending data to Salesforce to avoid creating duplicate
records or inconsistent states.

5. Timeouts and Retries

 Pub Sun Acknowledgement Deadlines: Cloud Run instances need to acknowledge
Pub/Sub messages within a specific timeframe (default is 10 seconds, can be extended). If
the processing of Salesforce requests takes too long (due to network issues or Salesforce
response delays), you might miss the acknowledgement deadline, resulting in message re-
delivery.

 Salesforce Timeout: The Salesforce API also has its own timeout limits. Long-running
operations on Cloud Run may cause timeouts, leading to failed transactions, and Pub/Sub
message retries.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

101

6. Concurrency and Scaling

 Auto-Scaling of Cloud Run: Cloud Run scales automatically based on incoming requests.
However, if Pub/Sub sends a high volume of messages, Cloud Run could scale up quickly,
possibly leading to a flood of Salesforce API requests that exceed limits.

 Concurrency Handling: Cloud Run allows multiple requests per instance by default.
Handling concurrency issues (like multiple requests trying to send the same data to
Salesforce) may require additional synchronization logic.

7. Error Handling and Logging

 Handling Salesforce Errors: If a Salesforce request fails (due to a 4xx or 5xx response), you
need robust error handling, retries, and possibly dead-letter queue (DLQ) implementations
to ensure messages are not lost.

 Logging and Debugging: With serverless architectures, logging and debugging can be more
difficult than in traditional environments. You will need to rely on tools like Google Cloud
Logging and monitoring solutions to effectively debug and trace errors.

8. Cost Considerations

 Cloud Run Costs: While Cloud Run is cost-effective for intermittent workloads, high-
frequency Pub/Sub messages may cause Cloud Run to scale significantly, leading to
increased costs.

 Salesforce API Call Costs: Depending on your Salesforce edition, excessive API calls may
also incur additional costs or require upgrading your plan to handle higher API request
limits.

9. Security Concerns

 Data Security: Ensuring secure transmission of data between Cloud Run and Salesforce
(e.g., using HTTPS, proper OAuth scopes) is crucial.

 Service Account and Credentials: Careful management of service accounts, API keys, and
OAuth credentials is important to avoid security vulnerabilities.

IX. BEST PRACTICES

When implementing Cloud Run to subscribe to Google Cloud Pub/Sub and publish to the
Salesforce REST API, it's important to follow best practices to ensure scalability, reliability, and
maintainability. Below are key best practices to guide your implementation:

1. Efficient Cloud Run Setup [7]

 Use Container-First Design: Ensure your Cloud Run service is optimized for containerized
environments. Keep the container lightweight, only including necessary dependencies.

 Minimize Cold Start Latency: To reduce cold start times, optimize the container image (e.g., use
a minimal base image like alpine). Avoid heavyweight dependencies, and pre-load essential
resources during startup to minimize delays in processing Pub/Sub messages.

 Warm Start Strategy: To avoid cold starts, you could use Cloud Scheduler to send periodic
"pings" to keep your Cloud Run instance warm if low-latency response times are critical.

2. Optimize Pub Sub Integration [8]

 Set Appropriate Acknowledge Deadlines: Use an appropriate Pub/Sub acknowledgement
deadline that accounts for the time needed to process messages, including Salesforce API calls.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

102

The deadline can be set to up to 600 seconds to accommodate longer operations if needed.

 Use Dead Letter Topics (DLTs): Configure dead-letter topics to capture messages that fail
multiple times (e.g., after exceeding a retry limit) instead of dropping them. This helps with
debugging and ensures no messages are lost.

 Enable Message Ordering (if Required): If message order is important (e.g., for sequential
updates in Salesforce), enable Pub/Sub message ordering using an ordering key to ensure
messages are processed in the correct sequence.

3. Handle Salesforce API Limits Gracefully [12]

 Respect Rate Limits: Salesforce imposes strict API call limits. Use throttling mechanisms within
Cloud Run to ensure the service doesn't overwhelm Salesforce with too many requests,
especially when Pub/Sub sends a large volume of messages.

 Implement Exponential Backoff for Retries: In the event of errors such as rate limits (HTTP 429)
or Salesforce API timeouts (HTTP 5xx), implement exponential backoff and retry mechanisms
to avoid continuously hitting the Salesforce API at high frequency.

 Batch API Requests: If possible, batch multiple Pub/Sub messages into a single API call to
Salesforce (e.g., using Salesforce Bulk API) to reduce the number of API requests and avoid
rate limiting issues.

4. Implement Robust Authentication and Security

 Use OAuth 2.0 with Token Refresh: Use Salesforce's OAuth 2.0 protocol for authenticating API
calls. Implement automatic token refresh mechanisms in your Cloud Run service to handle
token expiration without manual intervention.

 Secure Environment Variables: Store sensitive information (e.g., Salesforce client credentials,
OAuth tokens) as encrypted environment variables using Google Cloud Secret Manager.
Avoid hardcoding sensitive information in the container image or codebase.

 Use Service Accounts with Least Privilege: Assign the Cloud Run service a Google Cloud
service account with the minimum permissions required to subscribe to Pub/Sub and other
necessary resources. Avoid using overly permissive roles to reduce security risks.

5. Optimize for Scalability and Performance [7]

 Control Concurrency: By default, Cloud Run instances handle multiple concurrent requests.
Set the appropriate concurrency level (-concurrency flag) based on the complexity and
processing time of each Pub/Sub message. If each message requires significant processing (e.g.,
heavy Salesforce API interaction), you may want to reduce concurrency or set it to 1 for
sequential processing.

 Auto-Scaling Configuration: Cloud Run automatically scales based on incoming traffic. Set
appropriate maximum instance limits (-max-instances) to prevent Cloud Run from over-scaling
and overwhelming the Salesforce API with too many concurrent requests.

6. Ensure Idempotency

 Idempotent API Requests: Pub/Sub may occasionally deliver the same message multiple times,
so it's crucial that Salesforce API requests are idempotent. Design your API calls to Salesforce
(e.g., upserts instead of inserts) to ensure that multiple executions of the same message don't
cause duplicate records or data corruption.

 Message Deduplication: If necessary, implement a deduplication mechanism (e.g., use message
IDs or timestamps) to track which messages have already been processed to avoid processing
the same message multiple times.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

103

7. Monitor and Log Everything

 Structured Logging: Use structured logging (e.g., JSON format) to capture detailed logs from
both Pub/Sub and Salesforce interactions. These logs should include message IDs, status
codes, and response times to make debugging easier.

 Error Tracking and Alerts: Set up error tracking and alerts using Google Cloud Operations
(formerly Stack driver). Monitor metrics such as error rates, failed API calls to Salesforce, and
Pub/Sub message backlog to quickly identify issues.

 Cloud Run and Pub/Sub Monitoring: Use Google Cloud Monitoring to track important metrics
like Cloud Run CPU and memory usage, Pub/Sub subscription throughput, and Salesforce
API success rates.

8. Ensure Reliable Error Handling

 Graceful Failures: Ensure that your Cloud Run service handles errors gracefully. For example,
if a Salesforce API call fails, return an appropriate HTTP status code (e.g., 500) to allow
Pub/Sub to retry the message.

 Retries and Circuit Breakers: Implement retry logic with circuit breakers to prevent flooding
Salesforce with retries in case of ongoing failures. This helps protect against cascading failures
in case Salesforce is temporarily down or overloaded.

 Dead Letter Queues (DLQs): For messages that fail after multiple retries, use Pub/Sub’s dead-
letter topics to offload them for further investigation rather than discarding the messages.

9. Test Thoroughly

 Simulate High Traffic: Test your Cloud Run service under high traffic conditions by simulating
a large number of Pub/Sub messages. Ensure that the service scales effectively without
overwhelming Salesforce or breaching API limits.

 Integration Testing with Salesforce: Conduct end-to-end tests with Salesforce's sandbox
environment to verify that the API interactions behave as expected. Simulate different error
conditions such as timeouts, rate limits, and network issues to validate your error-handling
logic.

10. Cost Management

 Optimize Cloud Run Usage: Monitor Cloud Run usage and set appropriate autoscaling limits
to avoid unnecessary scaling that can lead to high costs. For long-running tasks, consider
breaking them up or using Pub/Sub push subscriptions instead of pull, which can reduce the
time Cloud Run needs to stay active.

 Monitor API Usage: Track your Salesforce API usage regularly to ensure you're not exceeding
your daily API limits and potentially incurring additional costs.

X. CONCLUSION
Integrating Google Cloud Pub/Sub with Salesforce provides a powerful solution for real-time
messaging and event-driven architecture. By following the steps outlined in this white paper,
organizations can enhance their Salesforce applications' responsiveness, scalability, and reliability.
This white paper serves as a guide for developers and architects looking to leverage the combined
capabilities of Google Cloud Pub/Sub and Salesforce applications.

International Journal of Core Engineering & Management

 Volume-6, Issue-08, 2020 ISSN No: 2348-9510

104

REFERENCES
1. Apex Developer Guide : https://developer.salesforce.com/docs/atlas.en-

us.apexcode.meta/apexcode/apex_dev_guide.htm
2. Google Pub Sub - https://cloud.google.com/pubsub/docs.
3. Google Pub Sub Architecture - https://cloud.google.com/pubsub/architecture.
4. Google Pub Sub Basics - https://cloud.google.com/pubsub/docs/pubsub-basics.
5. Apex Integration - https://developer.salesforce.com/docs/atlas.en-

us.apexcode.meta/apexcode/apex_integration_intro.htm.
6. [Google Pub Sub Push Subscription - https://cloud.google.com/pubsub/docs/create-

subscription.
7. Cloud Run Best Practices - https://cloud.google.com/run/docs/tips/general
8. Google Pub Sub Best Practices - https://cloud.google.com/pubsub/docs/subscribe-best-

practices
9. Connected App in Salesforce -

https://help.salesforce.com/s/articleView?id=sf.connected_app_create.htm&language=en_US
&type=5

10. Salesforce Event Bus - https://help.salesforce.com/s/articleView?id=release-
notes.rn_messaging_event_bus_section.htm&release=238&type=5

11. Salesforce Platform Events - https://developer.salesforce.com/docs/atlas.en-
us.platform_events.meta/platform_events/platform_events_intro.htm

12. Salesforce Platform Events Limits - https://developer.salesforce.com/docs/atlas.en-
us.platform_events.meta/platform_events/platform_event_limits.htm

