

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

52

OBSERVABILITY IN CLOUD-NATIVE ENVIRONMENTS CHALLENGES AND
SOLUTIONS

Premkumar Ganesan

Technology Leader in Digital Transformation for Government and Public Sector,
Baltimore, USA

Abstract

The need for resilient and scalable software has grown significantly in the modern software
development landscape, especially due to the exponential expansion of web-based services and
applications. With their new architectural methods, cloud-native technologies provide
dynamic scalability and robust resilience, making them a transformational force in tackling
these difficulties. This article provides an in-depth analysis of how software development
might benefit from cloud-native technologies in terms of scalability and resilience. Starting
with cloud-native architecture's guiding principles—including containerization, microservices,
and declarative APIs—the paper moves on to examine its underlying notions. Following these
guidelines, programmers can create and release apps with fault tolerance, high availability,
and the capacity to scale dynamically according to user demand. Additionally, the evaluation
delves into the essential elements of ecosystems that are native to the cloud, such as Kubernetes
and other container orchestration tools that automate the scaling and maintenance of
containerized applications. Also covered is how service meshes help make systems more
resilient by allowing microservices to communicate with each other in a safe and dependable
manner. In addition, exploring themes like distributed tracing, circuit breaking, and chaotic
engineering, the article dives into patterns and best practices for building resilient and scalable
cloud-native apps. To make their systems more resilient, developers can use these approaches
to find any weak spots and fix them before they happen. The importance of cloud-native
technologies in facilitating the development of resilient and scalable applications is
highlighted in this review. Organizations may successfully adapt to the ever-changing
requirements of software development in today's competitive market by utilizing cloud-native
ideas and the right tools and processes.

Keywords—Cloud-Native; Technologies; Software; Development; Resilience.

I. INTRODUCTION

Observability is an essential part of managing and maintaining complex cloud-native systems.
As more and more companies embrace cloud-native designs—which depend on distributed and
highly dynamic infrastructures—the need for comprehensive observability becomes vital. In
this post, we will look at what observability is, how it works, and why it's important for systems

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

53

that are built on the cloud. In addition to discussing the benefits of observability for
performance optimization and troubleshooting, we will analyze its core components—metrics,
logs, and traces [1]. What we mean by "observability" in the context of cloud-native systems is
that we can figure out how the system works by looking at its outputs, rather than trying to
figure out the system's underlying structure [2]. It surpasses the scope of traditional monitoring
methods, which primarily focus on basic health and component availability. To facilitate
effective management and rapid issue resolution, observability endeavors to furnish a thorough
comprehension of system behavior, performance, and interdependencies. the third Because
applications in the cloud often consist of numerous microservices and containers operating on
dynamic infrastructure, observability is of the utmost importance in these systems. It was easier
to understand and locate systemic issues with traditional monolithic designs. The breadth and
depth of cloud-native settings, however, make it challenging to quickly detect and resolve
problems without observability processes in place [4]. There are three primary components to
observability: metrics, logs, and traces. Numbers pertaining to many aspects of the system, such
as memory and CPU utilization, request latency, and error rates, are recorded by metrics [5].
They provide system operators with a bird's-eye perspective of the system's performance and
health, letting them see patterns, generate alerts, and make informed decisions.

Contrarily, logs document all system occurrences and actions in detail. These log entries include
alarms, errors, cautions, and anything else that is relevant. By collecting and analyzing logs,
operators can gain a greater understanding of the system's internal condition, identify
abnormalities, and address problems more effectively [6]. Understanding the flow of requests
among distributed application components is the primary objective of traces. Tracking
individual requests, including their path through different microservices, durations, and any
potential bottlenecks, allows operators to see the overall performance and behavior of the
system [7]. There are many benefits to having observability in cloud-native systems. As a first
benefit, it helps with problem-solving by illuminating the origins of issues. In the event of an
issue, the operator can rapidly determine its source by cataloguing the affected components,
checking relevant data, inspecting logs, and following the request flow. This shortens the
resolution procedure and decreases system downtime [8]. It is also easier to optimize
performance when it is observable. By monitoring and studying metrics, operators can identify
inefficiencies, bottlenecks, or anomalous behavior. They can use this information to determine
the optimal distribution of resources, adjust the size of individual components as needed, and
optimize the system's setup for maximum performance [9]. The ability to actively monitor and
plan for capacity is another benefit of observability. Operators can identify patterns and trends
in system activity and metrics over time, which could indicate issues or resource constraints.
This allows for the optimization of workloads or the scalability of resources before problems
affect the availability or performance of the system [10].

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

54

II. LITERATURE REVIEW
The growth of cloud computing and microservice architectures has caused a sea change in the
app development, deployment, and control processes. Reliability, scalability, and optimal
application performance in today's dynamic and dispersed environment are prerequisites for
cloud-native operations and observability. If the system is observable, you can learn a lot about
its health and how it is functioning. What makes cloud-native apps easy to manage and fix are
the procedures and tools that are "native" to the cloud [11]. The desire for faster, more flexible,
and scalable software development and deployment has pushed many towards cloud-native
architectures. It is now common practice to build cloud-native apps using microservices, which
are independent, loosely linked components. Over sixty-five percent of companies have used
microservices, with sixty-one percent of those companies running fifty or more microservices,
according to a poll by the Cloud Native Computing Foundation (CNCF) [12]. But it's more
difficult to manage, monitor, and repair system-wide issues when microservices are dispersed.
Traditional monitoring methods like siloed tools with restricted access just don't cut it in today's
cloud-native systems. When it comes to understanding the inner workings and behavior of the
system, cloud native observability is invaluable [13]. The three primary components of
observability in the cloud are metrics, distributed tracing, and logs. The function of logging is to
record system events and operations in a thorough manner. This enables operators to track the
operations' flow and identify issues. Quantitative metrics reveal the efficiency of a system, the
utilization of its resources, and the actions of its users. This facilitates proactive monitoring and
capacity planning. You may improve service communication and identify the source of latency
issues with the help of distributed tracing, which shows the complete request lifecycle as it
moves through microservices [14]. A study conducted by the CNCF demonstrated the
significance of observability. The results showed that unlike organizations with immature
procedures, those with advanced observability processes saw 43% fewer production difficulties
and a 64% shorter mean time to resolution (MTTR) [15]. For cloud-native programs to be robust
and dependable, observability is crucial.

Not only are cloud-native activities observable, but they are also crucial to the proper operation
of these complex systems. When it comes to cloud-native operations, automation is essential for
launching, scaling, and recovery because it streamlines the whole process. With Infrastructure
as Code (IaC) solutions, such as Ansible and Terraform, you may declaratively define and
provision cloud resources. Doing so guarantees uniformity and adaptability across settings. By
automating software delivery, Continuous Integration/Continuous Deployment (CI/CD)
pipelines allow for rapid and reliable app updates [16]. The use of container orchestration tools,
such as Kubernetes, to manage workloads in cloud-native settings has become the de facto
standard. An excellent platform for scheduling, managing, and scaling containers is Kubernetes.
The infrastructure behind is hidden, allowing developers to focus on the apps' logic. Most
businesses (91%) utilize Kubernetes in production, with 78 percent of those businesses running
more than 50 clusters, according to a CNCF poll [17].

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

55

Fig. 1: The Impact of Observability and Kubernetes on Cloud-Native Success

Businesses have benefited greatly from cloud-native observability and operational approaches.
Businesses who adopted cutting-edge cloud-native strategies outperformed their rivals by 23%
in revenue growth and 38% in time to market, according to research from Google Cloud and
Harvard Business Review [18]. These findings highlight the significance of utilizing cloud-
native observability and operations in generating value and innovation for businesses. When it
comes to building and maintaining scalable and robust apps in the cloud, cloud-native
operations and observability are crucial components [19]. With the use of analytics, automation,
distributed tracing, logging, and container orchestration platforms, organizations may simplify
deployment, learn more about application behavior, and increase speed. Companies who wish
to thrive in the modern digital economy will need to adopt these practices and technologies as
the cloud-native environment evolves [20].

III. OBSERVATIONS ON CLOUD-NATIVE OBSERVABILITY

Developers' daily lives aren't complete without cloud native and observability. When
developers are aware of their roles within observability at scale, they are better able to address
the problems they encounter every day. Observability goes beyond simple data collection and
storage, and developers are crucial for overcoming these obstacles.
Observability Foundations

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

56

We no longer need to wait for fresh resources to deploy our code, debug services within our
development toolchain, and monitor a known application environment. Thanks to auto-scaling
infrastructure, this is now available in the final production deployment environments fast,
flexible, and dynamically. Modern developers frequently aim to own their code for its entire
lifecycle, from development to production, and they want to be able to observe everything they
create along the way. Cloud settings with thousands of microservices are dynamic and
unpredictable, making it impossible for legacy technologies like Nagios and HP OpenView to
keep up. Being able to dynamically scale infrastructure is a must for cloud-native deployments.
Observability platforms help reduce data noise and identify trends that could cause downtime,
allowing for proactive mitigation.

A. Splintering of Responsibilities in Observability

Team Focus Maturity Goals

DevOps Software development lifecycle automation and
optimization encompassing post-launch repairs
and updates

Initial phases: developer
efficiency

Platform
engineering

Creating and designing procedures and
toolchains that allow developers to self-service

Achieving developer maturity
and increasing productivity in
the early stages

CloudOps Helps businesses streamline their operations by
managing their resources in the cloud according
to DevOps and IT operations best practices.

Cloud resource management,
expenses, and company agility
in subsequent stages

SRE Regardless of whether an app or its underlying
infrastructure is cloud native or not, this all-
encompassing role's primary objective is to
maintain reliability in any given context.

Stages ranging from early to
late: on-call engineers aiming
to minimise downtime

Central
observability
team

In charge of maintaining tooling and
observability data storage, as well as delivering
critical data to engineering teams and creating
standards and procedures for observability.

Later on, when you own
The first step is to establish
guidelines for monitoring.
transmit data gathered from
monitoring to the engineering
teams
Third, make sure the
monitoring systems are stable
and reliable.
4. Oversee the measurement
data storage and tooling
processes

Table 1. Observability Team

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

57

Not only did cloud-native complexity alter the landscape of developers, it also altered the
organizational structure of many companies. Multiple newly formed organizational teams are
now responsible for developing, implementing, and overseeing cloud-native infrastructure.
With the rise of hybrid jobs, developers are expected to take on more responsibilities beyond
code generation and work more closely with other team members. Observability teams have
been formed to offer a particular service to organizations within the cloud infrastructure by
concentrating on a particular part of the cloud-native ecosystem. Table 1 shows how these
specialized teams have broken down traditional organizational responsibilities. To grasp the
interdependencies among these groups, picture a big, established, cloud-native company with
all the groups listed in Table 1:

• When it comes to standardizing the processes of code creation, management, testing,
updates, and deployment, the DevOps team is at the forefront. The platform engineering
group supplies them with toolchains and workflow, which they use.

• Continuous improvement is the goal of DevOps, which is why it provides advice on
new tools and workflows.

• Managing cloud resources and making the most of other teams' cloud budgets are the
main focuses of a CloudOps team.

• To ensure that the organization's supporting infrastructure never goes down, a
dedicated SRE team is available 24/7 to handle reliability management. To help all the
teams enhance their platforms, methods, and tools, they offer input.

The observability standards are created by the central observability team, which also manages
tooling and data storage, ensures that the proper observability data is sent to the right teams,
and oversees the overall observability effort.

IV. WHY OBSERVABILITY IS IMPORTANT TO CLOUD NATIVE
Theproliferation of cloud native apps has left developers with an excessive amount of work to
do beyond writing code alone. Observability is becoming crucial for developers to solve many
of the problems they are encountering, due to the complexity that cloud-native systems
provide.

A. Challenges

Developers are delivering more code at a faster rate and passing more stringent tests to
guarantee that their apps function at cloud native scale, which is causing the complexity of
cloud native applications to increase. Because of these difficulties, the requirement for
transparency in the environment where developers typically coded has grown. Instrumenting
their code to monitor business metrics is an additional requirement on top of providing code
and testing infrastructure for their applications. Over time, developers realized that it was
unnecessary to fully automate measurements, and that a lot of the data was superfluous.
Because of this, developers started using manual instrumentation to hone their techniques of

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

58

measurement and capture only the metrics they needed. Integrating new observability
techniques into an organization's current application ecosystems is another difficult task. Many
developers fail to appreciate the effort required to manually instrument their applications to
supply an observability platform with the data it needs.

There are already enough of problems for developers before they must deal with new
observability technologies that aid with metrics, logs, and traces. organizations pay a premium
for advanced observability technologies, but only a select few really know how to use them.
This leads to knowledge silos and wasteful spending on the tools.

Finally, examining the consumed data from our cloud infrastructure makes it quite clear that
not all of it must be retained. The capacity to manage telemetry data and identify unnecessary
information by observability teams is essential. Some enquiries concerning the ways in which
we can accomplish this require answers:

 Find consumed data that our observability teams haven't applied to dashboards, alerting
rules, or ad hoc searches.

 Aggregate and apply rules to control telemetry data before storing it for the long term,
which can be costly

 Limit telemetry data usage to what is necessary for application landscape monitoring.

To make this data useful for the organization, it is vital to deal with the deluge of cloud data in
a way that filters out the unnecessary telemetry data and keeps just that which is applied for
our observability needs.

B. Cloud Native at Scale
Although cloud-native infrastructure offers a great deal of flexibility, even little complications
might become major obstacles when implemented on a large scale. This is because, according to
cloud native principles, we outline the ideal configuration for our infrastructure, the best way to
deploy our applications and microservices, and, lastly, how it should handle automated scaling.
A company's production infrastructure is less likely to be able to withstand spikes in consumer
usage when this method is used.

C. Empowering Developers

Platform engineering teams that priorities developer experiences are the foundation for
empowering developers. Our company prioritizes observability in the developer experiences
we design, and we invest resources into developing a telemetry strategy from the very
beginning. By fostering an environment that values observability in tandem with testing,
continuous integration, and continuous deployment, we are preparing development teams to

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

59

succeed in the cloud. In addition to taking responsibility of the code they produce, developers
are also encouraged and given the authority to generate, test, and own the telemetry data
generated by their microservices and applications. They are fostering agility and consensus
across the several teams developing cloud solutions in this exciting new environment where
they are the bosses of their own job. Any business that wants to succeed in today's cloud-native
environment must be able to meet the problems of observability head-on. Developers should
keep observability in the forefront of their minds, integrate it into their everyday workflows,
and rely on it to help them overcome obstacles.

D. Artificial Intelligence and Observability
Both developer tooling and the observability domain have seen an uptick in the use of artificial
intelligence (AI). One of two scenarios describes the use of AI to observability:

1. Keeping an eye on systems that use machine learning (ML) or large language models
(LLM).

2. Using AI as a helpful helper in observability tooling.

In the first scenario, you wish to keep tabs on AI workloads, such ML or LLMs. You may
further categories them into the training platform and the production platform, each of which
you may choose to keep an eye on. It is possible to treat training infrastructure, and the process
involved like any other workload: with simple, easily attained monitoring using instruments
and current approaches, like watching traces through a solution. While this is just a part of the
monitoring process, pre-built observability solutions can easily assist with monitoring these
workloads' infrastructure and applications.

In the second scenario, developers are exposed to observability tools that incorporate AI
assistants, including chatbots. It usually takes the kind of a code assistant, like the kind that lets
us tweak dashboard settings or run ad hoc queries on our time series data. While these are
convenient, companies are careful about how developers use them when entering searches
involving confidential or private information. To better train the agents for future query
assistance, it is crucial to comprehend that training these tools may involve utilizing
confidential data in their training sets or even data inputted by developers.
Because organizations will always guard their data from being used in ways they can't control,
it will be difficult to foresee how AI-assisted observability will evolve in the future. Therefore,
having agents trained solely on in-house data would be a step in the right direction towards
increased adoption, but it would result in a smaller training data set compared to agents that
are publicly available.

E. Cloud-Native Observability: The Developer Survival Pattern

As developers, we know that tooling isn't the magic bullet for all of our complicated challenges,
even if we spend a lot of time on it. Just like any other problem, observability can be difficult to

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

60

solve without taking the broader view into account. However, developers are frequently led
astray by the mantra of metrics, logs, and traces. No amount of data collection can ever keep up
with the data produced by cloud-native systems, particularly when operating at scale. The
performance of development teams is negatively impacted by the deluge of data, the difficulties
that come with it, and the incapacity to filter through it to identify the sources of problems.
Supporting developers with the correct quantity of data in the right formats at the right time
would be more helpful in solving challenges. If issues can be resolved swiftly, circumstances
can be remedied efficiently, and developers are happy with the outcomes, then observability is
not a concern. All we need is a single log line, two trace spans, and three metric labels to do this.
To achieve this goal, it is ideal if developers could be notified in advance when problems with
their apps or services are about to occur. As a first step in troubleshooting, they use data that
their instrumented applications have already identified to pinpoint problematic regions inside
the application. Developers using these tools can view dashboards with visual information that
pinpoints the source of the problem and when it may have begun. Developers must have the
ability to fix the issue, possibly by reverting a code change or deployment, for the program to
keep supporting interactions with customers. Figure 2 shows the approach that cloud native
developers used to resolve issues with observability. The final thing a developer should do is
think about ways to avoid such problems in the future.

Figure 2. Observability pattern.

V. RESEARCH METHODOLOGIES
A. Methodology Overview

Our methodology is grounded in systematic mapping and systematic literature review
preparation, both adapted to fit our research focus. We propose merging these approaches (as
shown in Fig. 4) to synthesize evidence and provide a comprehensive secondary study. The
observability SMS we suggest includes a sequence of results, each detailed in the following
sections.

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

61

B. Research Objectives
The observability SMS process begins with defining Research Questions (RQs)(Table 2), which
guide subsequent steps and outcomes. These RQs cover multiple domains of the studied topic,
providing a broad yet unbiased perspective on cloud-native observability.

C. Search Strategy
Our search strategy combines automated and manual searches to identify relevant studies.
Automated searches addressed RQs 2, 3, and 4, while RQ1 was addressed through manual
citation searches. We formulated search terms using the PICO method to ensure comprehensive
coverage of the research questions.

D. Study Selection
We applied a systematic selection process based on predefined inclusion and exclusion criteria.
This process prioritized studies on cloud-native application observability published within the
last five years. The studies were then classified based on their relevance and contribution to the
field.

E. Classification Scheme
The classification scheme was developed by keywording the abstracts and applying an entry
form designed by independent reviewers. This form, refined through iterative reviews, ensured
a structured categorization of the studies. The resulting analysis offers a clear overview of
contributions to cloud-native application observability research.

Concern Research Question (RQ) Supplemental Questions
Motivation RQ1: What provides the

motivations for equipping
CNApps with observability
capabilities?

- Are the distinguished fields mature
enough?

Structure RQ2: Which research areas
are addressed?

- What is the established meaning of the
observability term?
- How many articles cover the different
areas, and how has this popularity
changed over time?

MethodsandTechniques RQ3: How are observation
approaches implemented?

- What tools and techniques are used
most frequently?

Directions RQ4: What are the
recommended future trends
in CNApps observability
research?

- What challenges are distinguished for
adopting observability?
- What novel features do CNApps gain
while equipping the execution
environment with observability?

Table 2: Research questions

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

62

VI. CONCLUSIONS
It is necessary for organizations to have observability to be successful in a world that is cloud
native. It is impossible to overlook the fact that observability obligations are broken up into
multiple parts, as well as the difficulties that cloud-native systems present when applied at a
large scale. To achieve observability bliss, it is essential to have a solid understanding of the
issues that developers encountered in cloud-native organizations. To effectively manage
observability in contemporary cloud environments, it is essential to both empower developers
and provide solutions to observability difficulties. Additionally, it is essential to have an idea of
how the future of observability may look.

REFERENCES

1. B. Scholl, T. Swanson, and P. Jausovec, Cloud Native: Using Containers, Functions, and
Data to Build Next-generation Applications, ser. System administration. O’Reilly Media,
2019.

2. C. Davis, Cloud Native Patterns: Designing change-tolerant software. Manning
Publications, 2019.

3. N. Kratzke and P.-C. Quint, ―Understanding cloud-native applications after 10 years of
cloud computing - a systematic mapping study,‖ Journal of Systems and Software, vol.
126, pp. 1–16, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/ S0164121217300018

4. ―The twelve factor app,‖ https://12factor.net, last seen on March, 2021.

5. M. Senapathi, J. Buchan, and H. Osman, ―Devops capabilities, practices, and challenges:
Insights from a case study,‖ in Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018, ser. EASE’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 57–67. [Online]. Available:
https://doi.org/10.1145/3210459.3210465

6. J. Wettinger, V. Andrikopoulos, F. Leymann, and S. Strauch, ―Middlewareoriented
deployment automation for cloud applications,‖ IEEE Transactions on Cloud
Computing, vol. 6, no. 04, pp. 1054–1066, oct 2018.

7. P. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improving Software
Quality and Reducing Risk, 1st ed. Addison-Wesley Professional, 2007.

8. J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation, 1st ed. Addison-Wesley Professional, 2010.

9. M. Shahin, M. Ali Babar, and L. Zhu, ―Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and practices,‖ IEEE
Access, vol. 5, pp. 3909–3943, 2017.

10. S. Jain, Linux Containers and Virtualization: A Kernel Perspective. Apress, 2020.

https://doi.org/10.1145/3210459.3210465

International Journal Of Core Engineering & Management

Volume-7, Issue-04, 2022 SSN No: 2348-9510

63

11. C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, ―Cloud container technologies: A state-of-
the-art review,‖ IEEE Transactions on Cloud Computing, vol. 7, no. 03, pp. 677–692, jul
2019.

12. S. Daya, N. Van Duy, K. Eati, C. Ferreira, D. Glozic, V. Gucer, M. Gupta, S. Joshi, V.
Lampkin, M. Martins et al., Microservices from Theory to Practice: Creating
Applications in IBM Bluemix Using the Microservices Approach. IBM Redbooks, 2016.

13. Balalaie, A. Heydarnoori, and P. Jamshidi, ―Microservices architecture enables devops:
Migration to a cloud-native architecture,‖ IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.

14. ―Cloud Native Computing Foundation,‖ https://www.cncf.io, last seen on January
2021.

15. ―Cloud Native LandScape,‖ https://github.com/cncf/landscape, last seen on March,
2021.

16. R. Kalman, ―On the General Theory of Control Systems,‖ IRE Transactions on
Automatic Control, vol. 4, pp. 110– 110, 01 1960.

17. J. Kosinska and K. Zieli ´ nski, ―Autonomic management framework for ´ cloud-native
applications,‖ Journal of Grid Computing, vol. 18, no. 4, pp. 779–796, 2020.

18. N. Kratzke, ―Cloud-native observability: The many-faceted benefits of structured and
unified logging—a multi-case study,‖ Future Internet, vol. 14, no. 10, 2022. [Online].
Available: https://www.mdpi.com/1999-5903/14/10/274

19. N. Marie-Magdelaine, ―Observability and resources managements in cloud-native
environnements,‖ Theses, Université de Bordeaux, Nov. 2021. [Online]. Available:
https://theses.hal.science/tel-03486157

20. K. Petersen, S. Vakkalanka, and L. Kuzniarz, ―Guidelines for conducting systematic
mapping studies in software engineering: An update,‖ Information and Software
Technology, vol. 64, pp. 1–18, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/ S0950584915000646.

https://www.mdpi.com/1999-5903/14/10/274
https://theses.hal.science/tel-03486157

