

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

142

THE ROLE OF REQUIREMENT GATHERING IN AGILE SOFTWARE
DEVELOPMENT: STRATEGIES FOR SUCCESS AND CHALLENGES

Rajesh Goyal
FS – Insurance

IBM - US
Email: rajesh.nim@gmail.com

Abstract

Agile techniques for software requirements engineering allow for prompt adjustments to take into
account modifications to the client's software requirements. Agile requirements engineering
approaches can, however, present some difficulties that impede the rapid and sustainable creation
of software. In understanding the place of requirements gathering in Agile software development,
this work concentrates on the procedural aspect of software development amidst change.
Unfortunately, during the requirements gathering phase there are numerous problems ranging from
incomplete, or conflicting, or even changing requirements which may inevitably lead to failure.
The discussion uses examples such as the unsuccessful project at Qantas and thus these
considerations give users the responsibility of providing input. Open-source software development
is then explored in relation to requirements gathering and its associated difficulties. The paper
also identifies other major Agile methodologies that provide a framework for requirement
gathering. Various strategies for success in Agile requirements gathering, such as user stories,
backlog refinement, collaboration, and prototyping, are discussed. The paper also addresses the
challenges, including scope creep, ambiguity, and communication issues, proposing solutions to
mitigate these risks. Agile principles and practices, when effectively applied, can ensure that
requirement gathering leads to successful project outcomes, improved customer satisfaction, and
innovative solutions.

Keywords: Requirements Gathering, Agile Software Development, Strategies and Challenges

I. INTRODUCTION
The software development world is abuzz with the agile method. As a response to the "need for an
alternative to documentation-driven, heavyweight software development processes," agile
methodologies emerged as a way to build software. Traditional approaches include gathering and
documenting a "complete" set of requirements as the first step, then moving on to architectural and
high-level design, development, and inspection. Some practitioners, starting in the 1990s, found
these early stages of growth to be very difficult, if not impossible, to complete. Industry and
technology are evolving at breakneck speeds, requirements "change at rates that swamp traditional
methods," and consumers are becoming more and more ambivalent about upfront requirements
while simultaneously demanding more from software. Therefore, several consultants have taken it
upon themselves to adapt to the unavoidable shift by developing their own methodologies and
practices. In reality, Agile methods are more of a collection of practices that adhere to common
principles and share a common set of values [1].

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

143

Many, if not the vast majority, of the Fortune 500 organisations throughout the globe are beginning
to embrace the agile software development (ASD) methodology, which is widely recognised as a
best practice in the business sector. ASD is not a good approach to use for every kind of software
development project, however, and it does not always provide good results. The present research
outlines the essential Agile Software Development success variables that are associated with
project success.
The goal of modern agile software development approaches, such Extreme Programming (XP),
Scrum, Feature Driven Development (FDD), Agile Modelling (AM), and others, is to create and
deliver high-quality software that can satisfy all of the needs of the client. However, the majority of
developer’s neglect to take into account non-functional criteria like dependability, usability,
scalability, and performance [2].
 A nonfunctional requirement describes the features, attributes, and limitations of the program,
while a functional requirement specifies the product's correct functioning. Because of the limited
time, developers only focused on meeting the functional requirements. NFRs have the same
responsibility as FRs in the development of software. The software may fail because the agile
approach does not handle non-functional requirements. Software is produced effectively when
NFR and FR are integrated [3]. Figure 1 shows the software requirement gathering.

Fig. 1. Requirement Gathering software

Capturing, evaluating, and prioritizing needs in an iterative and collaborative way is the process
known as agile requirements gathering. Agile stress constant input, adaptation, and flexibility
throughout the project lifetime, in contrast to conventional waterfall methodologies. With this
method, the demands of the stakeholders are satisfied and the product or solution is guaranteed to
enhance the company. The paper contributes as:

 Emphasizes the critical role of requirements gathering in Agile for delivering quality
software under changing conditions.

 Provides real-world examples, such as the Qantas project failure, to illustrate the
consequences of poor requirements gathering.

 Explores the unique difficulties in gathering requirements for open-source software
development.

 Outlines key Agile frameworks like Scrum, XP, and FDD for structured requirement
elicitation.

 Discusses effective techniques, including user stories, backlog refinement, and prototyping,
to enhance Agile requirements gathering.

1.1 Structure of the paper
The following paper are structured as: Section II provide the overview of requirements gathering,
Section III give the overview of Agile Software Development, Section IV and V discussed the

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

144

strategies for success in agile requirement gathering and challenges in agile requirement gathering.
And last section VI provides the conclusion of this work with future directions.

II. OVERVIEW OF REQUIREMENTS GATHERING
Software development requires a complex method for acquiring requirements. Two significant
obstacles in requirements collecting that may potentially contribute to the failure of software
projects are incomplete requirements and requirements that are constantly changing. As a concrete
illustration, consider the cancellation of a $40 million software project by Australia's main airline,
Qantas, due to resistance from prospective customers, namely the Union of Aircraft mechanics.
The fact that upper management was so set on implementing their own ideas on the new software
without consulting or considering user feedback was a major problem. This seems to be a possible
issue with open source software development as well, as OSS developers sometimes just state the
requirements. Developers often disregard needs information provided by OSS users (such as
feature requests made via issue reporting artefacts). This is partly because requirements data
provided via issue reporting artefacts often includes issues, such as invalidity and incompleteness,
which exacerbate other issues, such the inability to address bugs and the implementation of feature
requests [4].

2.1 Issues and Solution for Requirement Gathering
Gathering requirements is an essential component of every project. It will become a difficult
endeavor to accomplish. The knowledge expert's role is to compile the specifications. There are a
few typical issues that arise while collecting requirements. In the same way that there is always a
method to solve an issue, there are always suggestions on how to overcome a challenge while
collecting requirements. A successful software project is guaranteed by high-quality requirements.

 Undocumented Processes: Many organizations either have inadequate or nonexistent
documentation on their current practices. In this case, obtaining requirements becomes a
two-step procedure. Firstly, the informational domain of the current process, followed by
the identification of domains for enhancement and optimization.

 Conflicting Requirements: The business analyst will be responsible for the comprehensive
documentation of all requirements. The ideas of all stakeholders will never be identical,
which results in conflicting requirements. The business analyst recognizes requests that are
inconsistent and allows stakeholders to determine their priorities.

 Lack of Access to End Users: End users were sometimes too preoccupied with their
everyday tasks to take part in the demand collecting process. The absence of end users
necessitates suitable resolution for a number of reasons.

 Validating and Tracing Requirement: Before beginning the implementation, the
requirements that have been obtained and specified should be double verified. The
needless necessity is avoided. The key will be to trace the requirements. Forward and
backward traceability need to be present.

 Stakeholder Design: Rather of giving specifics on what the system should accomplish,
stakeholders or end users need to express how the system should operate. Speaking with
stakeholders about potential solutions may be insightful, but it can also refocus attention on
real issues and lead to better solution ideas.

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

145

 Communication Issues: This includes terminology errors, ambiguous presumptions, and
linguistic differences that cause miscommunication between stakeholders and business
analysts. The easiest method to get around this is to set up two-way communication [5].

Requirement collecting is a continuous, flexible process in agile software development that is
focused on stakeholder participation. Instead of comprehensive upfront documentation,
requirements are collected and refined throughout the development cycle in the form of user
stories—short, user-focused descriptions of features. Teams may respond to shifting demands and
provide value gradually using this iterative method, which guarantees that the product changes in
response to ongoing input from customers and the market.

III. AGILE SOFTWARE DEVELOPMENT
Agile development methodologies were created to address the challenge of providing high-quality
software within a business context and needs that are changing quickly and continuously. The
software and IT sectors have a track record of success with agile approaches.

Fig. 2. Agile software development Methodologies[6]

Collaboration among teams and quick feedback from customers and other stakeholders are key to
agile software development [7]. Sharing code, information, and concepts is what is meant by
collaboration and communication. Social media hosted in the cloud is used for communication and
collaboration. In addition, several methods and resources are offered for teamwork. These
approaches to communication and teamwork are equally effective in on-site and off-site
development environments. The team uses Skype for scrum meetings, wikis and discussion
forums for team communication, and an AWS-EC2 instance for database sharing. Real-time reports
are also used.

Fig. 3. Adoption of Agile Development

Figure 3 demonstrates that around 69% of organizations are implementing one or more agile
methods for use in organizational development and general project management.

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

146

3.1Various approaches towards the development of Agile Software

 Agile Modelling (AM): is an innovative method for doing out modelling tasks. Developers
may follow these steps, which are based on agile philosophy, to create models that address
design issues and aid in documentation without "over-building" them. The goal is to
minimize the number of models and supporting materials. Although some of the AM
methods, including brainstorming, assist certain RE procedures, the RE techniques are not
mentioned specifically in AM.

 Feature-Driven Development (FDD): is a simple, five-step approach that emphasizes
generating a features list, designing and constructing phases with entrance and exit criteria,
planning by feature, and then iteratively designing and building steps by feature.
Developers and domain specialists work together in the first stage to build the generic
domain model. The classes, connections, methods, and properties shown in the class
diagrams form the backbone of the model.

 Dynamic Systems Development Method (DSDM): sprang up in the middle of the '90s in
the UK. It developed from and is an extension of the RAD methodology. The DSDM
process begins with two studies: the feasibility and the business. The initial needs are
gathered over these two stages.

 Extreme Programming (XP): principles of openness, honesty, criticism, and bravery form
its foundation. Software requirements might be unclear or subject to frequent change, but
XP tries to make it possible to design effective software anyhow. A key component of the
XP is the coordination and arrangement of the separate practices.

 Scrum: is a method based on hard data that prioritizes efficiency, adaptability, and
versatility. Scrum gives developers a lot of leeway to pick and select which software
development methodologies, strategies, and approaches to use throughout the
implementation phase. Agile project management with an emphasis on 30-day sprints to
achieve a defined set of backlog features is what Scrum is all about. Daily 15-minute team
meetings for integration and coordination are the key practice of Scrum.

3.2 Principles of Agile Software Development:
 Rather of being rule-based, agile approaches are principle-based and have established norms for
interactions, responsibilities, and tasks. The software engineers on the team, together with the
project manager, are guided by a set of principles that include [8][9]:

 The top focus is ensuring customer satisfaction via the timely and consistent supply of
important software.

 Even in the latter stages of development, agile procedures are adaptable to new needs
because they use change to the customer's benefit.

 Deliver functional software on a regular basis, preferably within a couple of weeks but not
more than a couple of months.

 Businesspeople and developers must be involved in order for them to work together every
day throughout the project.

 Collaborate on initiatives with enthusiastic people. Have faith in their abilities and provide
them the environment and resources they need to succeed.

 When possible, communicate with members of a development team face-to-face to provide
the most efficient and effective transfer of knowledge.

 The main indicator of progress is functional software.

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

147

3.3 Benefits of Agile Requirements Gathering Beyond Software Development

 Improved Project Success Rates: Through an iterative process that prioritises the delivery
of incremental value and the consideration of stakeholder input, agile requirements
gathering lowers the likelihood of project failures.

 Enhanced Customer Satisfaction: Agile guarantees greater customer happiness and loyalty
by including them into the requirements collecting process and providing value early and
consistently.

 Increased Innovation: Agile promotes a mindset of constant learning, feedback-driven
enhancements, and experimentation, all of which contribute to an innovative culture. This
drives innovation, which in turn drives corporate growth by meeting market wants.

IV. STRATEGIES FOR SUCCESS IN AGILE REQUIREMENT GATHERING
Agile software development emphasizes flexibility, collaboration, and iterative progress. However,
effective requirement gathering, also known as requirement elicitation, remains a key success
factor for Agile projects. The following success factors Agile Requirement Gathering discussed
below:
1. User Stories and Epics
In Agile, requirements are normally defined in the form of user stories which are brief, basic
statements of what user’s desire from the system. These are alongside epics which are larger pieces
of work that can be further divided into several user stories. It allows the team to break this down
into user stories so that tasks are prioritized according to customer value while remaining as
flexible as the requirements process requires.

2. Regular Backlog Refinement
The visible work product is kept in the product backlog that contains all of the desired features
and the changes. In grooming the backlog daily, the user stories are always ready, prioritized and
aligned to the goal of the project as set. This allows for controlling of scope and evolution of the
requirements throughout the next cycles based on customer feedback.

3. Collaboration and Cross-functional Teams
Agile is based on teamwork with particular emphasis on the development team; the product
owner and stakeholders and finally the user. Communication in Agile needs to be done face to face
often when it comes to requirement gathering. Stakeholder participation gives the team a clear
understanding of new needs to be met, and modifications may be effected as necessary.

4. Prototyping and Iterative Feedback
Generating early attempt or actual mock-up exposes layouts to stakeholders for discussion before
committing hardware and software resource. This feedback loop ensures that requirements are
user-friendly and reduces the occurrence of unwanted functionality by iteratively improving them.

5. Customer Involvement and Continuous Feedback
Customer interaction is a significant aspect of Agile, as Agile projects give much attention to
customers. Customers or stakeholders through daily scrum meetings and at the end of each sprint

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

148

like in sprint review or demo participate in the monitoring of progress hence real time feedbacks to
the product backlog.

6. Acceptance Criteria and Definition of Done
Criterion of a user story acceptance makes it clear among the team of developers regarding when a
particular feature is considered to be done. Thus, simplifying the concept through the Definition of
Done (DoD) weakens possible confusion and boosts the accountability.

7. Prioritization Techniques (MoSCoW, Kano, etc.)
Scrum teams therefore always apply the MoSCoW (Must have, Should have, Could have, Won’t
have) and the Kano Models in ascertaining which of the requirements is most valuable to the user,
with the implication that such priorities are solved first.

V. CHALLENGES IN AGILE REQUIREMENT GATHERING
Both, gathering and managing requirements in this environment is more of a challenging task and
requires more of specific approaches and techniques. Some of the challenges discussed below:
1. Changing Requirements and Scope Creep
In most cases, anything labeled as an agile plan is flexible, and, unfortunately, flexible means that
people tend to begin adding more features and functionality unbeknownst to the rest of your team.
This is one of the strong sides of Agile, yet it can be difficult to manage a constant change without
getting off track.

2. Ambiguity and Incomplete Requirements
In Agile, requirements are frequently in fact vague and not fully specified at first in order to
undergo major changes in the future. This could be useful for increasing creativity and latitude but
can result in ambiguity, and hence confusion to the development team, or to achieve the user’s
needs may take several cycles.

3. Difficulty in Prioritizing Features
In Agile, what features should be developed first must always be in dialogue between the
stakeholders, product owners, and developers. This is because there is conflict of priorities where
the investors may want the company to work on other features which are not so valuable in the
market yet the company focuses on delivering those features which its clients highly value.

4. Balancing Long-term Vision with Short-term Delivery
In Agile, development is incremental, but it is challenging to manage long-term objectives
alongside daily expectations for the arrival of new increments. One common set-back is that teams
tend to concentrate on the near-terms goals and forget the importance of big pictures.

5. Misaligned Stakeholder Expectations
Cross-functional Agile teams can have numerous and quite divergent requirements of the process
from a variety of stakeholders. Otherwise these expectations may become dissatisfactions,
particularly if entities do not understand the Principles of Agile and revert to conventional
strategies, with established dates and rigid perimeters.

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

149

6. Inadequate Documentation
It is a weakness that Agile pays more attention to producing tangible developed software instead
of documenting all angles of the project early on to enhance efficiency in the later phases. It would
also be as a nightmare to onboard new members to the team or review the older features that will
need a little tweaking here and there among other issues caused by a lack of documentation.

7. Team and Stakeholder Commitment
Agile requires continuous involvement from stakeholders, but this is not always possible. When
stakeholders are unavailable or unresponsive, the team may struggle to gather accurate
requirements and feedback, affecting progress.

8. Communication in Distributed Teams
Agile works best with face-to-face interactions, but with the rise of remote work and distributed
teams, real-time communication may be harder to achieve. This can lead to misunderstandings or
misaligned goals in requirement gathering.

VI. LITERATURE REVIEW
A literature overview on the topic of demand collecting in agile software development, including
successful solutions and problems, is presented in this section.
This De Lucia and Qusef, (2003) paper explores issues related to requirements engineering in agile
software development processes and offers solutions to some of the problems that arise from using
agile requirements engineering practices on large projects. Some of these problems include dealing
with sensitive requirements, both functional and non-functional, keeping agile teams connected
with external customers, and documenting and managing requirements documentation [10].
In this de Haan and Cohen, (2007) research presents findings from a scenario of an entrepreneurial
off-the-shelf software manufacturer in numerous case studies. A novel approach to software
development was born out of these discoveries. Lead-driven development involves creative
vendors improvising software development procedures to correct bugs and add new features
depending on leads they get from one marketing meeting or demonstration to the next. This kind
of development caters demo features to the demands of prospective consumers, but it doesn't help
the product's commercial development in the long term [11].
In this Kumar and Singh, (2016) research, the writers addressed the function of Agile software
development methodology in creating software for public art installations. This article aims to talk
about software engineering problems and how the software development model's agility affects
the end product [12].
The Shafiq and Waheed, (2018) research on documentation, its function, process model
documentation templates, pitfalls to avoid, data collection for documentation, document
requirement format, and principles for process structure documentation—including XP, lean,
crystal, FDD, DSDM, MSF, AUP, and ASD—in the context of documented processes. Researchers
and practitioners alike may use the survey results to better understand which process model is
most suited to a given scenario [13].
This Tshabalala and Khoza, (2019) the effect of a conflict-risk that is well handled in Agile teams on
the technological competitiveness of the company is examined in this article. The quantitative
approach to research, which used a purposive sample strategy, was the methodology that was

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

150

used. A survey that was conducted online to obtain information from Agile experts around South
Africa was used in the research. The results show that conflict exists and is very important for
accomplishing the objectives of agile projects. Furthermore, an organization's capacity to sustain
effective technological competitiveness, which contributes to the organization's overall
performance, is impacted by successful conflict-risk reduction and management, according to the
results [14].
 This Wang et al. (2014) study investigates eight agile groups from four software development
organizations, presenting a survey with three research questions to evaluate the handling of RE in
actual agile development. In order to address the three study topics, we created a questionnaire
specifically for 108 participants with extensive expertise in agile development. Although many
agile approaches promote coding without waiting for written requirements and design
specifications, our study reveals that agile RE practices are a vital precondition for projects' success
and play a significant role in agile development [15].
This Fitriani, Rahayu and Sensuse, (2016) study's overarching goal is to draw attention to the
difficulty of ASD by conducting a comprehensive literature review. The inclusion criteria were met
by a total of 20 publications in the sample. This research presents the distribution of publications
according to specified parameters, such as years and nations. The findings revealed that there are
thirty obstacles to using ASD methodology. Out of the 30 issues associated with ASD, the most
critical ones are team management and dispersed teams. Then there are requirements
prioritization, documentation, altering and over scoping, organization, process, and ongoing
feedback and progress monitoring [16].

The following table 1 provides the summary of the related work for requirement gathering in agile
software development.

TABLE I. SUMMARY OF RELATED WORK

Reference Methodology Key Findings Challenges Identified Suggestions for
Improvement

[10] Analysis of RE
activities in large
agile projects.

Discusses handling
sensitive and non-
functional requirements
in large projects.

- Poor management of
sensitive and non-functional
requirements
- Issues with documentation
and customer
communication

Suggestions include better
documentation practices
and stronger customer
communication.

[11] Multiple case study of
entrepreneurial off-
the-shelf software
vendors.

Emergence of lead-driven
development, where
vendors improvise
software features based
on customer demos.

- Short-term focus on demo
features
- Lack of long-term product
development planning

Highlights the risks of
overemphasizing
customer-specific demo
features at the expense of
long-term product goals.

[12] Case study on agile
development for art
installations.

Examines software
engineering and agility
impacts on art
installation software.

- No specific challenges
related to requirement
gathering mentioned

General discussion of
agility's role, but no
improvement suggestions
specific to RE.

[13] Survey on
documentation
practices across
different agile

Provides insights into
document creation and
requirements
documentation in various

- Documentation challenges
in methods like XP, DSDM,
and others

Offers guidance on process
model selection based on
specific documentation
needs.

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

151

methodologies. agile models.

[14] Quantitative survey
on conflict-risk
management in agile
teams.

Conflict management
plays a crucial role in
agile project success and
organizational
competitiveness.

- Conflict within agile teams
that can affect project goals

Encourages effective
conflict-risk mitigation
strategies for better project
outcomes.

[15] Survey with 108 agile
professionals from
four organizations.

Agile RE practices are
critical to project success
despite coding often
beginning without formal
requirements.

- Over-reliance on coding
without formal requirements
- RE not formalized in many
agile methods

RE should be recognized
as a vital component and
formalized in agile
methods for project
success.

[16] Systematic literature
review of 20 papers.

Identifies 30 challenges in
agile software
development.

- Team management
- Distributed team
coordination
- Requirement prioritization
-Documentation
- Scope changes
- Monitoring and feedback
issues

Highlights a need for
improved team
management,
documentation practices,
and process monitoring in
agile settings.

VII. CONCLUSION
The foundation of successful Agile software development is effective requirements gathering.
Although Agile enables teams to adjust to evolving customer demands, it also presents obstacles
such as controlling scope creep, settling competing objectives, and guaranteeing adequate
documentation. Agile methodologies such as Scrum and XP offer frameworks to address these
issues through iterative feedback, cross-functional collaboration, and continuous customer
involvement. Overcoming challenges like ambiguity, stakeholder misalignment, and distributed
team communication requires focused strategies, including regular backlog refinement,
prototyping, and the use of prioritization techniques. Ultimately, Agile requirements gathering,
when managed correctly, fosters innovation, customer satisfaction, and project success by ensuring
that software is developed in close alignment with evolving user needs.
Future work in Agile requirements gathering should focus on enhancing tools for remote
collaboration, exploring AI-driven techniques for prioritizing user requirements, and integrating
user experience (UX) methodologies within Agile frameworks. Additionally, empirical studies on
the effectiveness of various requirements gathering strategies across different Agile methodologies
will help refine best practices and improve project outcomes.

REFERENCES
1. A. De Lucia and A. Qusef, ―Requirements Engineering in Agile Software Development,‖ J.

Emerg. Technol. Web Intell., vol. 2, no. 3, Aug. 2003, doi: 10.4304/jetwi.2.3.212-220.
2. C. . Kavitha and S. M. Thomas, ―Requirement Gathering for small Projects using Agile

Methods,‖ IJCA Spec. Issue Comput. Sci. - New Dimens. Perspect., 2011.
3. T. Suryawanshi and G. Rao, ―A Survey to Support NFRs in Agile Software Development

Process,‖ Trupti Suryawanshi al, / Int. J. Comput. Sci. Inf. Technol., vol. 6, no. 6, pp. 5487–5489,
2015.

International Journal of Core Engineering & Management

 Volume-6, Issue-12, 2021 ISSN No: 2348-9510

152

4. S. Lane, P. O’Raghallaigh, and D. Sammon, ―Requirements gathering: the journey,‖ J. Decis.
Syst., 2016, doi: 10.1080/12460125.2016.1187390.

5. J. Mushtaq, ―Different Requirements Gathering Techniques and Issues,‖ Int. J. Sci. Eng. Res.,
vol. 7, no. 9, pp. 835–840, 2016.

6. G. S. Matharu, A. Mishra, H. Singh, and P. Upadhyay, ―Empirical Study of Agile Software
Development Methodologies,‖ ACM SIGSOFT Softw. Eng. Notes, vol. 40, no. 1, pp. 1–6, Feb.
2015, doi: 10.1145/2693208.2693233.

7. D. Batra, W. Xia, and M. Mingyu ", ―Collaboration in Agile Software Development: Concept
and Dimensions,‖ Commun. Assoc. Inf. Syst., vol. 41, pp. 429–449, 2017, doi:
10.17705/1CAIS.04120.

8. T. Dybå and T. Dingsøyr, ―Empirical studies of agile software development: A systematic
review,‖ Inf. Softw. Technol., vol. 50, no. 9–10, pp. 833–859, Aug. 2008, doi:
10.1016/j.infsof.2008.01.006.

9. H. Alahyari, R. Berntsson Svensson, and T. Gorschek, ―A study of value in agile software
development organizations,‖ J. Syst. Softw., vol. 125, pp. 271–288, Mar. 2017, doi:
10.1016/j.jss.2016.12.007.

10. A. De Lucia and A. Qusef, ―Requirements engineering in agile software development,‖ J.
Emerg. Technol. Web Intell., 2010, doi: 10.4304/jetwi.2.3.212-220.

11. U. de Haan and S. Cohen, ―The Role of Improvisation in Off-the-Shelf Software Development
of Entrepreneurial Vendors,‖ in 2007 International Conference on Systems Engineering and
Modeling, IEEE, Mar. 2007, pp. 85–92. doi: 10.1109/ICSEM.2007.373337.

12. A. Kumar and Y. Singh, ―The impact of agile based software engineering in interactive art
installations,‖ in 2016 2nd International Conference on Advances in Computing,
Communication, & Automation (ICACCA) (Fall), IEEE, Sep. 2016, pp. 1–5. doi:
10.1109/ICACCAF.2016.7749009.

13. M. Shafiq and U. sman Waheed, ―Documentation in Agile Development A Comparative
Analysis,‖ in 2018 IEEE 21st International Multi-Topic Conference (INMIC), IEEE, Nov. 2018,
pp. 1–8. doi: 10.1109/INMIC.2018.8595625.

14. M. M. Tshabalala and L. T. Khoza, ―Improving the Organization Technology competitiveness
through Effective Management of Conflict-Risk within Agile Teams,‖ in Proceedings - 2019
International Multidisciplinary Information Technology and Engineering Conference, IMITEC
2019, 2019. doi: 10.1109/IMITEC45504.2019.9015899.

15. X. Wang, L. Zhao, Y. Wang, and J. Sun, ―The Role of Requirements Engineering Practices in
Agile Development: An Empirical Study,‖ in Communications in Computer and Information
Science, 2014, pp. 195–209. doi: 10.1007/978-3-662-43610-3_15.

16. W. R. Fitriani, P. Rahayu, and D. I. Sensuse, ―Challenges in agile software development: A
systematic literature review,‖ in 2016 International Conference on Advanced Computer Science
and Information Systems (ICACSIS), IEEE, Oct. 2016, pp. 155–164. doi:
10.1109/ICACSIS.2016.7872736.

