

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

341

ADDRESSING DEVELOPMENT CONSTRAINTS IN TEST AUTOMATION FOR
.NET-BASED FINANCIAL SYSTEMS: STRATEGIC APPROACHES USING CI/CD

AND JENKINS

Arun K Gangula
arunkgangula@gmail.com

Akshay R Gangula

akshaygangula1377@gmail.com

Abstract

Financial software systems require strict testing methods because of their increasing
complexity and regulatory needs. This paper investigates strategic test automation methods for
.NET-based financial systems by focusing on CI/CD methodologies and Jenkins automation
server implementation. The paper identifies financial domain-specific challenges, which include
compliance needs, legacy system connections, sensitive data protection, UI automation, and
non-functional testing requirements, and presents solutions to overcome these obstacles.
Financial institutions can improve software quality and speed up delivery cycles while
maintaining compliance through deep software development lifecycle integration of automated
testing and Jenkins extensibility.

Keywords: .NET, Test Automation, Financial Software, CI/CD, Jenkins, Compliance Testing,
Legacy Systems, Data Masking, UI Testing, Performance Testing, Security Testing,
Mainframes.

I. INTRODUCTION

Financial systems require the .NET platform because it supports enterprise operations through
scalability features, secure programming, and type enforcement. The combination of object-
oriented development along with functional programming support in .NET provides excellent
alignment for financial industry requirements.

A. Background and Context: Financial systems of today rely on Artificial Intelligence (AI) and

Machine Learning (ML) for performing real-time fraud detection, algorithmic trading, and
customer service personalization. The introduction of these technologies improves system
functionality yet creates complex challenges that require thorough testing. The need for
secure and compliant operations under real-time data streams requires robust test
automation to maintain system security and operational efficiency.

mailto:arunkgangula@gmail.com

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

342

B. The Role of Test Automation: Software quality stands as an essential factor because
financial data remains highly sensitive, while system failures pose significant risks. Test
automation stands as a fundamental approach to deliver fast and reliable results along with
complete coverage. The current agile development workflows require modern automated
testing methods because manual testing fails to meet their speed requirements and produces
too many errors. The automated testing market reached a value of approximately $30 billion
during Q4 2022 due to its critical importance. [1] The implementation of effective
automation technologies shortens delivery times while expanding testing scope and
enhancing software reliability assurance. [2]

C. CI/CD and Jenkins as Enablers: CI/CD practices now control software delivery through

automated build, test, and deployment pipeline management. The automation server
known as Jenkins serves as the preferred tool for pipeline management among users who
choose open-source solutions. The development and testing tools for .NET benefit from its
extensible framework and plugin system.

D. Problem Statement: Constraints in Financial Test Automation: The adoption of CI/CD

promises does not address the exclusive automation barriers that .NET financial systems
encounter. The teams need to manage both regulatory requirements (SOX, GDPR) and
handle sensitive test data, test complex algorithms, and work with legacy systems and UIs
across platforms. The difficulty increases when organizations need to fulfill non-functional
requirements such as performance, scalability, and security standards. The testing tools
from the past era fail to match the requirements of modern DevOps operations. [1] The
adoption of CI/CD with Jenkins as an orchestrator faces challenges because of domain-
specific barriers, which include secure test environments and embedded compliance checks,
until organizations implement customized strategies.

II. DEVELOPMENT CONSTRAINTS IN TEST AUTOMATION FOR NET FINANCIAL
SYSTEMS

The integration of complex financial systems with regulatory needs and existing system
connections and essential financial software operations makes .NET financial application testing
automation particularly challenging. The combination of these barriers requires development
teams and QA professionals to work together strategically.

A. Complexity of Financial Logic and Regulatory Compliance:
Financial applications implement complex business logic that includes risk assessment
alongside derivative pricing, fraud detection, high-frequency trading, and regulatory reporting.
The numerous complex testing scenarios require both advanced domain knowledge and
significant resources for test automation development.

The combination of SOX (Sarbanes-Oxley Act) and GDPR (General Data Protection Regulation)

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

343

regulatory requirements increases the level of pressure on financial institutions. SOX requires
financial organizations to establish internal controls for financial reporting, while GDPR
restricts personal data usage even in testing scenarios. Automation requires two main functions:
it needs to validate functionality while producing auditable evidence of compliance through the
generation of verification logs and data consistency checks, along with access authorization
tests.

B. Test Data Management and Security:
The sensitive nature of financial data requires protection for both customer information and
transaction records as well as proprietary models. The restrictions imposed by GDPR on using
real production data for testing purposes force teams to adopt alternative methods, such as
masked data and anonymized or synthetic datasets. Organizations face a persistent difficulty in
achieving both test data realism and privacy compliance.

The test environments need to replicate production security through encryption and network
segmentation, along with strict access controls. The process of automating environmental setup
combined with compliance verification proves difficult to accomplish. The implementation of
Endpoint Protection and Response (EPR) security measures must reach test environments to
stop them from developing into security vulnerabilities.

The constraints are interlinked. Compliance requirements (A) determine data strategies (B) by
demanding synthetic data, which potentially does not cover essential edge cases. The use of
masked data might unintentionally alter fundamental business logic operations. When
addressing one issue independently of its associated problems, automation effectiveness may be
compromised. A holistic method requires us to understand that all elements exist in a state of
interdependence.

C. Difficulties in using old technology and other companies’ services:
Organizations that choose hybrid environments want their .NET applications to interoperate
with COBOL-based mainframes and DB2 databases (legacy systems). The process of testing in
these environments presents numerous obstacles to overcome.

 System Availability & Stability: The testing of legacy systems faces two major challenges
because they are unavailable and unstable, which decreases test reliability.

 Outdated Interfaces: The systems lack contemporary API capabilities, so developers must
implement fragile custom solutions through screen-scraping methods.

 Data Incompatibilities: The use of EBCDIC versus ASCII/Unicode encoding standards,
together with database schema differences, necessitates advanced transformation and
validation algorithms.

 Skill Shortage: The lack of experienced professionals who understand both legacy systems
and modern platforms makes test design and maintenance more challenging.

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

344

Third-party service integration brings instability because payment gateways, data feeds, credit
scoring services, and regulatory APIs experience latency issues, downtime, or make API
changes. The solution to these problems requires using service virtualization together with
mocking and contract testing, which introduces additional complexity.

The financial industry faces difficulties implementing the “shift-left” approach because creating
complex production-like environments during early development stages proves challenging.
The stringent security requirements for test data make this situation worse. The process
involves a trade-off between early testing benefits and the fact that practical and compliance
restrictions frequently push back the start of comprehensive integration testing.

D. UI Automation Complexities (WPF, WinForms, Web):
Financial applications contain rich interactive user interfaces that combine WinForms and WPF
legacy systems with modern web interfaces built using ASP.NET Core MVC, Blazor, and
JavaScript frameworks.

The automation of diverse UI interfaces proves difficult to manage.
The automation of UI elements becomes challenging because many applications implement
specialized components (e.g., SciChart for WPF) that standard tools cannot support, which
demand advanced technical expertise to create custom automation code.

Element Identification faces challenges because the combination of dynamic content with
complex DOMs results in unreliable UI element targeting, which produces unstable tests.
The combination of asynchronous UI updates with CSLA.NET frameworks leads to test
synchronization and validation challenges that cause timing problems.

The maintenance of high-quality tests becomes complex when the user interface undergoes
frequent changes unless organizations follow established patterns such as POM and Screenplay.
Financial systems continue to rely on legacy desktop applications because these systems utilize
complex data grids together with real-time updates and customized user interfaces. Standard
web automation tools lack capability in handling these requirements so advanced frameworks
(e.g., FlaUI, TestStack.White, WinAppDriver) with extensive custom development are needed.
The maintenance of UI automation in this context demands continuous resources to perform
properly.

E. Performance and Non-Functional Testing Demands
The non-functional requirements (NFRs) in financial systems maintain equivalent importance to
functional requirements. The system must deliver low-latency performance, along with high
transaction volumes and market data, while being able to scale up for peak loads during market
openings, closings, and month-ends.

The development cycle requires automated performance testing to perform stress testing, soak

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

345

tests, and scalability testing. The management of specialized tools together with accurate
workload modeling and production-like test environments becomes complex and costly to
maintain.
Security testing holds equal importance to the system because it involves both vulnerability
scanning with Nessus and penetration testing, as well as following OWASP Top 10 standards.
The integration of security tools SAST, DAST, and SCA into CI/CD pipelines remains essential
but remains challenging because of security risks that include false positive results and delayed
pipelines.

F. Tooling and Skill Gaps in NET Test Automation:
The .NET platform offers various testing tools, including NUnit, MSTest, and xUnit.net, but
implementing a unified automation strategy across all test types from unit to security remains
challenging. A unified framework integration requires both architectural planning and
extensive technical expertise from developers. [2]

Financial domain hiring becomes more challenging because ideal candidates must demonstrate
.NET expertise, together with test automation proficiency, domain understanding, and
knowledge of compliance/security requirements. The market lacks a sufficient number of
qualified employees who possess combined expertise in hybrid skills.

The transition toward automated testing faces opposition from the existing workforce, which
represents a major cultural obstacle. The transition needs executive backing, along with staff
education, and staff members need to accept new approaches. Progress becomes impeded by
the presence of outdated tools alongside outmoded practices, together with manual workflows.
Open-source and DIY solutions face difficulties when testing needs expand because they fail to
maintain stability and support, and handle scaling properly. [1]

Fig 1. Test Automation Life Cycle for Financial Systems.

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

346

Table 1. Key Development Constraints in Test Automation

Constraint
Category

Description Primary Impact on Test Automation

Regulatory &
Compliance

Complex regulations (SOX, GDPR); need
for audit-ready test processes.

Requires compliance-aware test cases,
secure data, and audit trails; manual checks
can slow automation.

Data Management
& Security

Handling sensitive data, creating
realistic, compliant test datasets.

Test data is hard to obtain; risks of breaches,
poor data quality, and reduced reliability;
high setup effort for data prep.

Legacy System
Integration

.NET integration with mainframes
(COBOL, DB2); unstable legacy test
systems.

Fragile or blocked tests due to system
inaccessibility; custom logic/tools needed
for compatibility and data handling.

Third-Party
Service
Integration

Dependency on external services (e.g.,
payment gateways, market feeds).

Test instability from service issues, slower
runs, test cost rises, and mocking/service
virtualization becomes essential.

UI Automation
Complexity

Rich UIs (WPF, WinForms, web) with
dynamic content and custom controls.

Hard to identify/interact with UI elements;
scripts break on UI updates; need async
sync and specialized automation tools.

Non-Functional
Testing Demands

Strict performance/security needs (e.g.,
latency, scalability, vulnerability checks).

Demands expert tools and skills; hard to
simulate real-world loads/threats in CI/CD
without slowing delivery.

Tooling & Skill
Gaps

Complexity in choosing/integrating
.NET tools; shortage of skilled cross-
domain professionals.

Slows framework building and automation
maturity; manual fallback persists; hard to
hire and retain automation talent.

III. OVERVIEW OF NET TECHNOLOGIES IN FINANCIAL SYSTEMS AND TESTING
IMPLICATIONS

The .NET ecosystem allows developers to build robust financial systems that both scale
effectively and maintain high security standards. The technical environment of .NET requires a
comprehensive understanding, along with testing requirements, to achieve successful
automation.

A. NET Framework vs NET Core/5+ in Financial Applications:
Financial institutions utilize the mature .NET Framework to maintain their legacy systems,
while deploying new applications using cross-platform .NET Core/5+.

 The .NET Framework provides deep enterprise infrastructure integration with broad third-
party support but remains Windows-exclusive and difficult to modernize. The testing
approach depends on outdated tools and traditional methods because its monolithic
structure and platform-specific design create limitations.

 The .NET Core/5+ platform introduced modularity features and enabled cross-platform

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

347

deployment capabilities for Windows and Linux systems and container environments. The
platform enables developers to work with modern development methods including micro
services and cloud-native applications. The C# programming language maintains
individual popularity because of its high-performance capabilities and its support for
asynchronous operations. F# has gained popularity among companies because it serves as
an excellent choice for quant programming and data-intensive domains.

The mixed environment creates challenges for automation because test strategies need to handle
different build tools (MSBuild vs. dotnet CLI) and frameworks and deployment targets. QA
teams need adaptable skills and infrastructure to handle both stacks.

B. Security and Performance in ASP.NET Core:
ASP.NET Core is a high-performance, secure framework for APIs and web apps. As a result, it
is being used in the Financial services sector.

 Security: The array of features, such as support for authentication (e.g., Identity, JWT),
authorization, cryptography, anti-forgery, and XSS/CSRF attacks. Testing must verify both
implementation and resistance to vulnerabilities, especially for complex workflows with
granular access rules.

 Performance: ASP.NET Core supports async processing and new protocols to achieve low
latency and high throughput. Performance tests must validate real-world scalability.

A generic scan may not detect the logic-level flaw within the cloud service's configuration.
Security tests should validate business-specific controls (such as role-based access control,
proper validation of sensitive inputs).

C. Entity Framework for Financial Data Management:
Entity Framework (EF) and EF Core use object mapping and LINQ for easier database access.
However, they present distinct testing challenges.

Data Integrity and Query Accuracy: Automated tests need to verify that LINQ-to-SQL
translations execute data operations correctly, especially when performing financial calculations
or data joins.
Performance: If a query or mapping is not efficient, it may degrade the system's performance.
Performance tests are vital for the data layer.
Unit Testing Strategies:

 In-memory Providers like SQLite/EF Core In-memory are ideal for fast unit tests but may
not reflect the real database behavior.

 The business logic remains isolated through DbContext/DbSet mocking but the actual
query execution remains unverified.

o The Repository Pattern functions as a data access decoupler and provides better
testability features.

o

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

348

The auditing tool: Audit .NET version 19.3.0 introduced DbTransaction interceptors which
enable logging of data changes made through EF. All essential modifications need to be verified
through automated tests that check Audit logs.

The implementation benefits of EF come with a trade-off of potential performance issues and
data integrity problems. The combination of mocking with integration tests and performance
tests becomes necessary to detect SQL generation problems and database schema constraints
and transactions because mocking alone is insufficient. [3]

IV. CI/CD PRINCIPLES AND JENKINS FOR ENHANCED TEST AUTOMATION
Modernization of test automation of a complex .NET financial system must be implemented
based on CI/CD Methodology, utilizing an automation tool like Jenkins. The methods help
ensure consistent quality and speedy delivery.

A. Key CI/CD Principles:
Continuous Integration (CI): CI is a practice where developers submit code into a central
repository to automatically run the build and test. Detecting integration problems early in the
software development process helps teams collaborate more effectively and maintain stable,
testable code. Compilation and unit testing, plus static code analysis, are included in the typical
automated CI process.

Continuous Delivery (CD): CD is a process that builds on CI when the automated deployment
processes are triggered for test/staging environments, when the build results are successful.

The final production releases need manual approval to ensure business readiness and
controlled rollouts. Shahin et al. [4] conducted a systematic review to study current CI/CD
practices, which revealed common organizational difficulties and toolchain integration
problems. The analysis demonstrates that automation strategies need to match the capabilities
of CI/CD pipelines to preserve stability and compliance in regulated environments.

Continuous Deployment (CD): The CD process automates all release operations from
production deployment through to the end without human intervention after successful testing.
The system delivers new features quickly and reliably through strong automated testing and
monitoring systems.

B. CI/CD Benefits for Test Automation:

 Developers get quick feedback due to automatic tests, which run on each commit to check
code quality.

 Prompt removal of bugs from the CI/CD pipeline will make it easier to debug.

 Increasing the stability of the releases, raising the code quality with automated testing

 You get better test coverage because CI/CD pipelines conduct comprehensive testing that

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

349

could be unit testing, API testing, or UI testing. Furthermore, we can run the tests in parallel
in two different environments.

 Automating build, test and deploy processes accelerates time-to-market through faster
releases and less manual work. [1].

C. Jenkins as a CI/CD Orchestrator:
Jenkins is a widely used open-source automation server to configure CI/CD pipelines,
including those in .NET based financial systems.
Key Features for .NET Projects.

 Build Support: Jenkins uses Microsoft Build Engine and .NET Command Line Interface to
build .NET Framework and .NET Core projects. Jenkins demonstrates its effectiveness in
CI/CD, as proven in recent research on the application of CI/CD. It also emphasizes its role
in enhancing performance testing in automated pipelines as part of DevOps processes [5].

 Pipeline-as-Code approach allows managing Jenkins pipelines in the same way as we do
with code.

 Example Commands: bat ’msbuild myapp.sln’ or sh ’dotnet build myapp.csproj’.

 Distributed Builds: Its master-agent set-up allows parallel testing/build to be executed on
various environments (Windows for .NET Framework, Linux/Windows for .NET Core).

 VCS Integration: Jenkins automatically triggers pipelines when code is changed in Git or
other systems. [6].

 Scheduling & Reporting: You can trigger pipelines based on schedules or SCM changes,
with helpful logs and reporting.

 Artifact Management: Artifact management allows users to archive artifacts and integrate
with Artifactory or Nexus. Jenkins can be extended with a number of plugins that make it
very powerful for .NET financial testing.

 Compliance checks (e.g., SOX).

 Advanced security scanner (eg Invicti for DAST, OWASP Dependency-Check for SCA).

 Financial data simulation and Legacy integration systems.

 Build/test add-ons: MSBuild [7], NUnit [8], MSTest [9].

Even though Jenkins is made for general purposes, its plugins help programmers make rich
customizations to meet the needs of financial institutions. Jenkins can accommodate modern
and legacy infrastructure and specialized software along with strict compliance requirements.
[6].

Essential Jenkins Plugins for .NET
Multiple Jenkins plugins exist to support .NET development and testing operations.

Core Build & Test Plugins

 MSBuild Plugin: The MSBuild Plugin uses MSBuild.exe to build.NET Framework projects
and works with both freestyle jobs and pipeline syntax (e.g., bat msbuild...’).

 .NET SDK Plugin: The .NET SDK Plugin (dotnet-sdk) enables pipeline steps for .NET Core

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

350

and .NET 5+ development through dotnetBuild, dotnetTest and dotnet. Publish features
while supporting SDK versioning and configuration.

 NUnit Plugin: The NUnit Plugin reads NUnit test result XML files (e.g., **/TestResult.xml)
to generate test trends and detailed reports.

 MSTEST Plugin: The MSTest Plugin enables Jenkins to publish MSTest.trx test results and
.coverage.xml files into Jenkins-compatible formats. Example usage: step().

 MSTEST Runner Plugin: Executes MSTest tests through the MSTest.exe command. The
plugin has maintained its popularity since its initial release several years ago.

Coverage & Utility Plugins

 Generic Coverage Plugins: The "Coverage" and "Code Coverage API" plugins, together
with Generic Coverage Plugins, import reports from OpenCover and other tools to display
test coverage metrics.

 Pipeline Utility Steps Plugin: The Pipeline Utility Steps Plugin provides basic pipeline
functionality through its steps, which enable file management, archiving, and environment
variable control. [10]

 Credential Plugin: The Credentials Plugin enables secure management of sensitive
information, including API keys, tokens, and passwords, throughout pipelines.

External Integration Plugins

 The security scanning functionality of Invicti Enterprise Scan for DAST operates as a plugin.
[11]

 The SonarQube Scanner for MSBuild provides security and quality insights into code
through its static analysis capabilities.

 The OWASP Dependency-Check plugin serves as an SCA tool to detect third-party library
vulnerabilities.

Fig 2. CI/CD pipeline for a .Net Financial Application.

Financial Sector Considerations:
The financial industry uses CD to mean full automation except for regulatory risks and system

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

351

criticality which require manual approval gates before production deployment. Jenkins
pipelines support this hybrid model. The system enables automated deployment up to staging
but demands business approval to deploy production.
The choice between .NET Framework and .NET Core determines the operations of the Jenkins
pipeline.

 The .NET CLI enables cross-platform building with .NET Core through its agent and
scripting capabilities. [10]

 The use of Visual Studio/MSBuild on Windows agents for .NET Framework requires
additional setup complexity. [7] The different architectural approaches affect both Jenkins
file development and infrastructure setup processes.

Table 2: Comparison of .NET Test Automation Frameworks

Category Tool/Plugin
Key Features for .NET Financial

Systems
Jenkins Integration

Unit
Testing

NUnit Framework
Attribute-based, parallel and data-
driven tests; supports .NET
Framework & Core

dotnet test or NUnit Console in
pipeline; results via NUnit Plugin

MSTest
Framework [2]

Built into Visual Studio; data-driven;
supports both .NET types

dotnet test or vstest.console.exe;
results via MSTest Plugin

Build Tools
MSBuild Plugin
(Jenkins) [7]

Builds .NET Framework projects;
customizable MSBuild arguments

tool directive + bat 'msbuild...' in
pipeline

.NET SDK Plugin
(Jenkins)

Supports build/test/publish for
.NET Core/5+ using dotnet CLI steps

withDotNet, dotnetBuild,
dotnetTest, etc.

Test
Reporting

NUnit Plugin
(Jenkins) [8]

Parses NUnit XML results; trend
graphs and test details

Post-build step: nunit
testResultsPattern:
'**/TestResult.xml'

MSTest Plugin
(Jenkins) [9]

Converts MSTest .trx & coverage files
for Jenkins dashboards

step() post-build

Security
Testing

Invicti DAST
Plugin (Jenkins)
[11]

Automates dynamic security scans;
can break build on critical findings

Pipeline step: Netsparker
EnterpriseScan or CLI

SonarQube for
MSBuild

Static code analysis (SAST),
quality/security scanning for .NET

SonarScanner commands (begin,
build, end); Jenkins plugin for
integration

OWASP
Dependency-
Check

SCA tool for identifying known
library vulnerabilities

Run via CLI in pipeline; results
archived as reports

API
Testing

Postman +
Newman CLI

Test REST APIs; Newman runs
collections in CI; generates
JUnit/HTML reports

CLI execution in Jenkins; publish
reports

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

352

Category Tool/Plugin
Key Features for .NET Financial

Systems
Jenkins Integration

Katalon Studio

End-to-end test platform (API, Web,
Mobile); supports CLI & plugins for
Jenkins

Run via Katalon Runtime Engine
in Jenkins

SoapUI

Tests SOAP/REST APIs (functional,
load, security); often used in legacy
financial services

CLI runner in pipeline; JUnit-
compatible reports

V. STRATEGIC APPROACHES TO MITIGATE TEST AUTOMATION CONSTRAINTS
The implementation of CI/CD principles through Jenkins tools addresses various testing
challenges for .NET-based financial systems. The following section outlines efficient approaches
to incorporate automated testing through practical examples.

A. Integrating Automated Testing into CI/CD Pipelines with Jenkins
1. Build, Test, and Deploy .NET Applications: The success of test automation depends on the

unified execution of build processes with testing and deployment stages within Jenkins
pipelines.

 To build .NET Framework and .NET Core+ projects developers must use the MSBuild
plugin and .NET SDK plugin.

 After building the application, execute unit tests through dotnet test, vstest.console.exe, or
nunit3-console.exe based on the chosen framework type. [2]

 Test integration requires dependency management through either mocking or virtualization
to run automated tests.

 The pipeline configuration must include immediate failure checks for build and test phases
to provide immediate feedback and block defect progression.

2. Publish and Visualize Test Results: Clear test reporting enhances feedback.

 The NUnit Plugin [8] and MSTest Plugin [9] enable Jenkins to process result files (NUnit
XML and MSTest TRX) and generate dashboards which show pass/fail counts and error
details with historical trends. [6]

 The integration of OpenCover code coverage tools requires Jenkins plugins (e.g., Coverage,
Code Coverage API) to visualize results in Cobertura XML format.

 The tool helps developers identify areas of the code which need additional testing so they
can enhance test coverage.

B. Automating Test Environment Provisioning and Management
Successful CI/CD implementation in .NET financial systems depends heavily on automatic test
environment setup. Manual setup of test environments leads to longer wait times and
inconsistent results.

 Jenkins can execute IaC Tools, including Terraform, CloudFormation, and Ansible, to

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

353

automatically create testing environments that produce consistent deployments.

 Test environments using Containers and Kubernetes enable developers to create self-
contained and reproducible test environments, particularly for microservices. Jenkins
manages the lifecycle of their containers. Project Tye provides tools to help users deploy
.NET microservices to Kubernetes environments.

 Environment configurations: Including API endpoints and feature flags must happen in
Jenkins or through external management to accommodate different test stages such as QA
and UAT.

 The pipeline should automate test data preparation together with environment setup for
testing purposes. CI/CD speed and consistency will be compromised when manual steps
replace automated processes.

C. Strategies for Testing Complex Business Logic and APIs
Financial systems operate with sophisticated business logic together with multiple API
connections. The following approaches help ensure robustness:

 API Testing: The testing of APIs requires three types of automation through Postman
(Newman CLI), Katalon, SoapUI, and Rest-Assured for functional and security tests and
performance testing.

 BDD: Through BDD frameworks, including SpecFlow, users can express test scenarios in
Gherkin, which creates executable and verifiable code that runs in CI pipelines.

The testing technique of Model-Based Testing (MBT) has gained popularity as a promising
approach to create automated test designs for complex systems. The authors, Garousi et al. [12],
demonstrated MBT implementation for web applications through GraphWalker to improve
both fault detection and test coverage. Academic origins of MBT methods have not limited their
practical use in modern enterprise environments because of their structured and repeatable
approaches.

 Data-Driven Testing: MSTest and NUnit allow running tests with multiple input sets for
data validation of different financial scenarios along with edge cases. [2]

 Contract Testing: Through Contract Testing PACT enables organizations to validate that
their microservices maintain compliance with established API contracts. The
implementation of contract tests within CI/CD systems enables the detection of breaking
changes at their earliest stages.

D. Addressing Data Security and Compliance in Automated Testing
The process of managing data security and compliance exists within automated testing systems,
especially in financial test environments that need to strike a balance between realistic data
processing and security protocols and regulatory standards including GDPR and SOX.

 Data Masking & Anonymization: Organizations must utilize data masking and anonymize
automated scripts or tools to protect financial data prior to testing. The pre-test stages of
Jenkins should execute these scripts to transform sensitive information into masked
synthetic alternatives.

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

354

 Data Sub setting: Functions help shorten test execution by providing financial simulation-
based subsets that maintain referential integrity.

 Test Data Management Tools: The implementation of test data management tools, such as
Delphix, enables organizations to deliver masked datasets through CI/CD pipelines,
providing fresh, compliant test data.

 Security Policy Enforcement: The implementation of security policy enforcement through
Role-Based Access Control and strict access rules should occur in test environments using
synthetic data. The automated testing process must confirm that these policies function
correctly.

 Azure SOC2: The testing requirements under Azure SOC2 follow the principles of logical
segregation and tight access, which should apply to all testing procedures.

 Audit Trail Verification: Tools like Audit.NET allow organizations to create logs for
tracking test activities that involve sensitive data. The completeness of logs for compliance
purposes (such as SOX) should be validated by automated tests.

E. Tackling Legacy System Integration Testing Challenges
The testing of .NET applications which integrate with legacy systems including mainframes
requires distinctive methods for implementation.

 We can use tools like WireMock or build our simulators that will allow us to fictively use
legacy services like DB2, MQ, CICS, etc., when real integration is not possible.

 Robust integration environments: Test environments with stable interfaces to legacy
systems, often via APIs and/or middleware, along which reliable CI/CD execution is
possible.

 Start replacing the old components with Microservices as you go along. The automated tests
of CI/CD pipelines need to test both the modernized and remaining legacy components
together.

 AI tools can evaluate the ramifications of any change in the system before testing on deeply
embedded systems like IBM i (IBM integrated), allowing for focused and efficient test
design.

F. Performance and Security Testing Automation within CI/CD
When deliberating financial systems, continuous validation of performance, non-repudiation or
security in CI/CD is essential.
1. Automated Performance Testing: Jenkins pipelines can implement performance testing

through tools including JMeter, LoadRunner, k6, and NeoLoad to execute automated load,
stress, and scalability assessments for .NET applications and APIs.

 JMeter serves as a popular open-source tool that supports intricate testing of financial
transaction scenarios.

 The implementation of performance testing within CI/CD workflows needs specific
approaches along with best practices to achieve benefits while resolving integration
issues. The implementation of these approaches helps identify performance issues at an
early stage to guarantee systems fulfill their non-functional requirements. [13]

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

355

The collection of test metrics (response time, throughput and error rate) must be visualized
through Jenkins dashboards.

2. Automated Security Testing – "Shift Left Security": Early and frequent security testing is

key:

 SAST: The source code scanning tool SonarCloud (via SonarScanner for MSBuild)
examines code for vulnerabilities without running any code.

 DAST: The security testing tool Invicti conducts real-world attacks on web and API
applications through its simulation functionality. [11]

 SCA: The SCA tool OWASP Dependency-Check scans third-party libraries for known
security risks. The integration of these tools into Jenkins requires configuration to stop
build processes when serious issues are detected.

3. Security as Code: Security policies and test rules should be defined as code, version-

controlled, and executed automatically, ensuring consistency and auditability across
environments.

4. Chaos Engineering: Pipelines should integrate tools like Gremlin, LitmusChaos, or Chaos

Monkey to test system resilience when failures occur. System robustness testing requires
simulating outages or anomalies through these tools.

The selection of .NET testing frameworks (NUnit, MSTest) and their effective integration with
Jenkins for result parsing, visualization, and trend analysis directly affects the development
team’s ability to diagnose and rectify issues quickly. This, in turn, is crucial for maintaining the
velocity of the CI/CD pipeline. The lack of clear test results in Jenkins and invisible historical
trends forces developers to waste time debugging their tests and following failure reports. The
feedback loop becomes slower than the speed at which CI/CD aims to accelerate it. The
operability and fast issue resolution depend on clear and well-integrated reports from the
NUnit and MSTest Jenkins plugins [6].

Fig 3. Flowchart for Integrating Security Testing into Jenkins.

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

356

Table 3. Strategic Approaches Matrix

Constraint Strategic CI/CD Approach
Key Jenkins Capabilities /

Plugins
Expected Benefit

Regulatory &
Compliance

Automate compliance checks
and evidence generation in
pipelines.

Pipeline scripts, compliance
reporting tool integration,
Credentials Plugin

Continuous validation,
audit-ready logs,
reduced compliance
effort.

Data
Management
& Security

Automate masked/synthetic
test data and secure
environment provisioning.

IaC via Terraform/Ansible,
Delphix API, Docker Plugin

Secure, compliant test
data; repeatable and
isolated test
environments.

Legacy
Integration

Use service
virtualization/mocking; test
new API layers independently.

WireMock CLI, API test tools
(Postman/Newman, Katalon)

Reliable tests even
without live legacy
systems; support
phased modernization.

3rd-Party
Integration

Mock external services; apply
contract testing for APIs.

Mocking tools: PACT
CLI/plugin

Early contract
validation; faster, more
stable test cycles.

UI Automation
Complexity

Apply patterns like POM and
run tests in parallel on agents
or the cloud.

Distributed builds, Selenium
Grid, cloud plugins (e.g.,
LambdaTest)

Faster UI testing; more
stable, maintainable test
code.

Non-
Functional
Demands

Shift-left performance and
security testing into CI/CD.

JMeter, LoadRunner CLI,
SonarQube Scanner, Invicti

Plugin [11], OWASP
Dependency-Check

Continuous risk
reduction; early
detection of NFR issues.

Tooling &
Skill Gaps

Standardize tools; use reusable
pipelines; invest in team
enablement.

.NET SDK, MSBuild,

NUnit/MSTest plugins [10];
Pipeline-as-Code

Easier onboarding,
better consistency,
reduced tool chaos.

VI. DISCUSSION
A. Analysis of Effective Proposed Strategies
Integrating comprehensive test automation into CI/CD with Jenkins addresses the challenges in
fast .NET testing of financial systems.

When we automate building, deploying and testing (like unit, integration, API, UI, performance
and security), we get better coverage and speed of feedback. Furthermore, it also helps make
them more reliable.
Y
et different companies have varying levels of maturity with test automation practices.
According to Wang et al.’s global survey [14], many teams experience process inefficiencies,
tooling limitations, cultural resistance and so on, which limits the scaling of test automation.

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

357

Improvements to automation efforts need to be carried out after assessing maturity as seen from
the findings.

 IaC and containerization remove the bottleneck of manual test environment setups,
speeding them up and ensuring consistent results.

 Automated test data management (masking/synthesis) helps in keeping GDPR/SOX
compliance while allowing robust testing.

 Legacy Systems: Service virtualization and phased modernization tested within CI/CD
pipelines enable safer gradual integration for legacy systems.

 Shift-left testing for performance and security enables continuous validation of critical non-
functional requirements.

 These strategies succeed only when financial institutions undergo a fundamental cultural
transformation.

 The adoption of DevOps by Dev, QA, Ops, and Security teams becomes crucial for
maintaining long-term results. [1]

 The best tools along with automation will not reach their potential unless organizations
break down their traditional silos and adopt a continuous quality mindset.

 Strong leadership, together with long-term training investments and process change
initiatives, are needed to overcome risk aversion and build team autonomy and a blameless
learning culture.

B. Potential Limitations and Areas for Future Research
There are limitations, too, despite the clear benefits of CI/CD and automation.

 Smaller or less mature financial institutions tend to struggle getting set up because of
complexity and a high initial set-up cost.

 It’s costly and resource-intensive to keep your fragile test suites, like UI tests and integration
tests, running as the app changes often, as regulations do.

 New test data generation techniques will need to be developed with an appropriate balance
between realism and privacy (GDPR/SOX) and coverage (especially AI-related).

 Future research may also explore:
o Using standardized API contracts and tests makes integrations easy between banks

and FinTech’s.
o Enhanced CI/CD metrics to assess test efficacy, release risk, and compliance

adherence.
o Use of better dashboards for decision making around business and testing risks.

C. The Evolving Role of AI in Test Automation
The implementation of AI and ML technology transforms test automation processes within
financial systems. Here are the key innovations:

 The generation of test cases through AI-powered technology enables ML models to suggest
tests or produce tests automatically from user behavior changes, code modifications, and
past test coverage discoveries.

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

358

 The implementation of self-healing tests enables AI to modify scripts automatically when
user interfaces change, thus reducing the need for manual modifications.

 The analysis of performance patterns together with logs enables ML systems to detect
failures that standard assertions cannot identify.

 Predictive techniques enable organizations to enhance testing quality through the
identification of high-risk test areas, which are determined by change impact and failure
history.

AI systems perform security verification through the creation of realistic attacks by mimicking
fraud detection models. The implementation of AI systems presents difficulties when operating
within regulated environments.

 AI-generated results, together with test cases, need to maintain both auditability and
explainability features.

 The validation of AI systems for fairness, accuracy, and bias requires new frameworks to
test the AI itself.

The scalability of Azure and AWS cloud platforms enables users to request cloud testing
environments and parallel execution capabilities.

 The implementation of cloud testing environments and parallel execution through requests
creates additional challenges regarding cost management, cloud security validation, and
data residency compliance.

 The CI/CD systems need to support secure cloud-native testing which combines cost-
effectiveness with regulatory compliance.

VII. CONCLUSION
A. Key Development Constraints Recap
Financial systems based on .NET face serious test automation issues due.

 Complicated corporate logic and strict guidelines (SOX, GDPR).

 Working with financial data in testing.

 Integrating with legacy mainframes.

 Automating complex UI layers.

 Overcoming high-level performance and security requirements.
These limitations impede the speed, reliability, and test coverage of financial applications.

B. Summary of CI/CD and Jenkins-Based Strategies
The solution for these limitations is CI/CD driven by Jenkins in this paper. Key strategies
include.

 Automated tests (unit to security) integrated across the CI/CD pipeline.

 Using IaC and containers to automate the provisioning of environments.

 securely handling test data through masking, and so on.

 Tackling legacy systems with service virtualization and gradual modernization.

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

359

 Using the Jenkins plugins, .NET apps can be built, tested (using NUnit, MSTest), result
visualization can be done, and the security/performance tools can be integrated.

Jenkins is the automation tool that fully coordinates the testing, building, and deployment
process.

Fig 4. .Net Financial System CI/CD Impact on Testing.

REFERENCES
1. “Houlihan-Lokey-automated-software-testing–q4-2022,” 2023. [Online]. Available:

https://www.scribd.com/document/860127844/houlihan-lokey-automat ed-software-
testing-q4-2022

2. Lambdatest, “Best C# Testing Frameworks In 2023.” [Online]. Available:
https://www.lambdatest.com/blog/c-sharp-testing-frameworks/

3. “Overview of testing applications that use EF Core Learn Microsoft.” [Online]. Available:
https://learn.microsoft.com/en-us/ef/core/testing/

4. M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery and deployment: A
systematic review on approaches, tools, challenges and practices,” 2017. [Online]. Available:
http://arxiv.org/abs/1703.07019

5. R. Kusumadewi and R. Adrian, “Performance Analysis of Devops Practice Implementation
Of CI/CD Using Jenkins,” MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi
(Journal of Computer Science and Information Technology), vol. 15, pp. 90–95, 10 2023.

6. “Jenkins for Test Automation: Tutorial,” 2023. [Online]. Available:
https://www.browserstack.com/guide/jenkins-for-test-automation

7. “MSBuild Jenkins Plugins,” 2023. [Online]. Available: https://plugins.jenkins.io/msbuild/
8. “Nunit | Jenkins Plugin,” 2023. [Online]. Available: https://plugins.jenkins.io/nunit/
9. “MSTest | Jenkins Plugin,” 2023. [Online]. Available: https://plugins.jenkins.io/mstest/
10. “.NET SDK Support Jenkins,” 2023. [Online]. Available:

https://www.jenkins.io/doc/pipeline/steps/dotnet-sdk/
11. “Integrating Invicti Enterprise with the Jenkins Plugin,” 2023. [Online]. Available:

https://www.invicti.com/support/integrating-invicti-enterprise-scan-jenkins-plugin/

International Journal of Core Engineering & Management

Volume-7, Issue-08, 2023 ISSN No: 2348-9510

360

12. V. Garousi, A. B. Keles¸, Y. Balaman, Z. Ö. Güler, and A. Arcuri, “Model-based testing in
practice: An experience report from the web applications domain,” 2021. [Online].
Available: https://arxiv.org/abs/2104.02152

13. “Integrating Performance Testing into CI/CD Pipelines for,” Retrieved from
jsaer.com/download, vol. 7, pp. 272–278, 2020.

14. Y. Wang, M. Mäntylä, S. Demeyer, K. Wiklund, S. Eldh, and T. Kairi, “Software test
automation maturity: A survey of the state of the practice,” Proc. 15th Int. Conf. Softw.
Technol., 2020, pp. 27–38.

