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Abstract 

 
Lithium-ion batteries, the technology of choice in the energy storage industry today, are unable 
to totally prevent thermal runaway (TR) incidents.  In this sense, using real-time monitoring as 
well as warning mechanisms for the batteries is not just crucial but also extremely beneficial as 
they enable the identification of the battery's protection state and the prompt removal of any 
potential safety hazards. The presented research describes a novel way for the thermal runaway 
prediction in lithium-ion batteries to be detected at an early stage using the NASA Battery 
Dataset from Kaggle. The dataset comprises the voltage, current, temperature, and EIS time 
series measurements altogether, stored in MATLAB .mat files and organized according to 
battery cell and then cycle number. A very thorough pre-processing of the data was done—
missing values were replaced, Z-score normalization was applied, and outliers were removed. 
To enhance the model's performance, a convolutional neural network (CNN) using Bat 
Optimization was proposed. The model was exceptionally accurate with an R² score of 99.8% 
and very low values of RMSE and MAE, thus surpassing the existing methods like SVM, 
Random Forest, and 1D models. Visualization results indicated that the actual and the 
predicted capacity trends had very close alignment, and there was also reliable RUL estimation 
and stable learning behaviour. Thus, the CNN optimized by Bat has proved to be a strong 
predictor, the possessing of superb learning capability, and the high reliability making it the 
ideal solution for battery systems' early thermal runaway prediction. 
 
Keywords: Lithium-ion Batteries, Predictive Maintenance, Battery Health Monitoring, 
Thermal Runaway, RUL Estimation. 
 
 

I. INTRODUCTION  
The lithium-ion battery (LIB) has emerged as the primary energy storage medium across 
different sectors such as transport, electric power grid and personal electronics due to its 
significant breakthroughs in efficiency and cost reduction during the last ten years. However, 
battery malfunctions result in major issues like explosions and fires in robotics, cellphones, and 
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aero planes [1]. The primary indicators of serious battery failure include mechanical, electrical, 
thermal, as well as electrochemical misuse.  A battery cell's unregulated chemical reaction 
known as thermal runaway can result in a devastating fire.  If a battery above certain 
temperature thresholds, chain reactions involving heat, temperature, as well as chemical 
reactions may take place [2][3]. Because of their pressure build-up design, cylindrical cells are 
particularly vulnerable to explosion. Thermal runaway prediction models depending on the 
cellular inner workings are espoused in the search for quicker warning system for known 
truthful ways.  
 
The sensor that is not functioning properly in the battery management systems (BMSs) leads to 
important errors in state estimation, hence affecting the reliability of the system. In particular, if 
voltage sensors do not function correctly, the BMS not be able to set the correct charge limits. 
This, in turn, leads to overcharging/undercharging cycles, which are operational anomalies. 
Such deviations make the cells deteriorate faster because they exposed to non-ideal 
electrochemical conditions and eventually, internal short circuits might happen. The current 
errors in sensors have a direct effect on the calculations of the state of charge (SOC), thus, 
making it impossible for the BMS to exercise proactive equalization management.  
 
The precise evaluation of battery health and the creation of battery systems with dependable 
operation and maintenance are the most important factors in increasing battery life and safety. 
It is widely acknowledged that predictive maintenance is the bedrock application in adhering to 
the "IT" manufacturing vision; being based upon the proactive practice of diagnosing potential 
equipment faults by utilizing data analysis and artificial intelligence (AI) [4]. This necessitates 
the uninterrupted supervision of the state of the machines, the evaluation through artificial 
intelligence, and the forecast of the breakdowns of the machines for the preventive maintenance 
to be carried out in time [5]. The conventional battery management system (BMS) usually uses 
external sensors (voltage, current, and temperature) for battery monitoring.  These systems can 
be enhanced with a large amount of publicly available sensor data. For the purpose of analyzing 
this sensor data, the implementation of certain advanced data analysis techniques is being 
considered [6], to deal with extensive multidimensional data and automatically pick up 
complex behavioral pattern strands. Supervised machine learning capabilities have been 
exploited to perform greater accuracy in classification and handle non-linear relationships in 
datasets efficiently, hence making them suitable for separating behaviors Deep learning (DL) is 
a division of machine learning (ML) that stresses on the utilization of multilayered neural 
networks (NNs) for learning which in fact, comprise a great number of parameters. Deep 
learning, through its multiple layers of abstraction, is capable of collecting features directly from 
raw data [7], thereby, pattern recognition becomes more complex, it can even detect the non-
linear traits of batteries in real-time, thus proving its high adaptability to different battery types. 
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A. Motivation and Contribution of the Study 
In a lot of critical applications, Lithium-ion batteries have become the best choice and along 
with this, safety problems like thermal runaway need very precise early detection systems. 
Conventional BMS sensors are not very dependable and hence they lead to wrong state 
estimation, thereby heightening the risk of failure. So, it is the right time for the machine 
learning-assisted smart, data-driven methods to take over, which could make it possible to 
achieve real-time monitoring, predictive maintenance, and safer battery operations. The 
following are the primary findings of this study 

 Leveraged the NASA Battery Dataset on time-series Li-ion battery aging patterns with close 
and broad-based time measurements.  

 The thorough pre-processing outline briefly involved processing from early stages for 
missing-values management (removal), Z-score normalization, and outlier detection.  

 Proposed a novel structure that merges Convolutional Neural Network (CNN) with the Bat 
Algorithm in a controlling manner for the purpose of forecasting enhanced results.  

 This model brought an impressive R2 of 99.8% and had very low RMSE and MAE values. 
 
B. Significance of the Study 
This investigation is significant as it marks a strong and accurate strategy for predicting the 
thermal runaway in Lithium-Ion batteries at an initial phase, resulting in a safe and healthy 
management of the batteries. Additionally, the technique integrates CNN with Bat 
Optimization to boost forecasting accuracy, full preventive maintenance support, and the 
provision of a solution that is advantageous to the energy storage and electric vehicle industries 
in actual scenarios. 
 
C. Organization of the Research 
The organization of the paper is as follows: In Section II, the existing studies on Early Prediction 
of Thermal Runaway in Sensor Batteries are reviewed, Section III describes the methodology 
which consists of dataset and model implementation, Section IV discusses performance, results 
and comparisons of the models, and finally Section V wraps up with insights and future 
research directions. 

 
 

II. LITERATURE REVIEW 
The various research articles highlight the usage of ML and optimization techniques for the 
timely prediction of thermal runaway in sensor-equipped battery systems, with special 
attention to health estimation, RUL forecasting, SoC prediction, and energy management. 
 
Daniels, Kumar and Prabhakar's (2024) work aims to optimize the temperature sensors for all 
the chosen sensor distribution patterns, which could be further used to develop an ML model 
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and test its accuracy in predicting the cell position undergoing TR in the battery domain within 
the multiple operation conditions. To identify the optimized sensors, the Pearson Correlation 
Coefficient (heat map) optimization strategy is implemented by analyzing the correlations 
between temperature sensors and potential fault positions based on the coefficient limiting 
threshold of 0.85 [8].  
 
Huang et al. (2024) the validation of the method was done with the NASA battery dataset and 
then it was assessed through different representative machine-learning techniques for an 
accurate battery health evaluation. Some performance metrics have been used, in order to 
validate the methodology. It has been revealed that the models trained with the suggested 
features are more accurate than the models trained with a single feature, as the prediction 
metrics are below 4% [9]. 
 
Xie et al. (2024). This framework merges a group of RVFL neural networks that are enhanced 
with domain adaptation in order to yield precise estimates. Cross-validation skill has been 
conducted on battery data sets NASA and CALCE which were publicly available. The 
verification results show that the proposed framework can ensure that the root mean square 
error (RMSE) is less than 2% in the absence of target labels [10]. 
 
Pan and Ji (2024) finally, the algorithm model validation is carried out with NASA and CACLE 
battery dataset, & the findings outlines that the model prediction method based on the charging 
IC curve and BOA-ELM can predict the RUL of battery more accurately than other models, and 
the values of MAE and RMSE are lower than 2%, with better prediction accuracy and 
robustness [11]. 
 
Chen et al. (2023) The heat flow has a positive relationship with the temperature differential on 
the HFS membrane's bottom surface. The temperature difference grew from 0.034 K to 0.251 K 
as the measured thickness of the thermal resistance layer increased from 2 μm to 15 μm. 
Furthermore, there is a strong linear correlation (R2 = 0.99996) between the temperature 
variation as well as the thickness of the thermally resistant layer, indicating that the thin-film 
heat flux sensors' effectiveness is additionally optimized when the thickness of the layer varies 
[12]. 
 
Li et al. (2021) the battery's remaining capacity is then assessed in real time by feeding the 
calculated RC model parameters through a multivariate regression model. With an overall 
inaccuracy of 2.57%, which is larger than conventional approaches that just employ ohmic 
internal resistance for their indication, results from studies employing the NASA battery 
database demonstrate the reliability of the suggested approach [13]. 
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The relevant systems present Table I for the research background on methodology, 
dataset/environment, problems addressed by the researchers, performance, and prior/future 
work. 

TABLE I.  REVIEW OF LITERATURE ON EARLY PREDICTION OF THERMAL RUNAWAY 
IN SENSOR BATTERIES 

Author Methodology Dataset Problem 
Addressed 

Performance Future Work / 
Limitation 

Daniels, 
Kumar & 
Prabhakar 

(2024) 

Pearson 
Correlation 
Coefficient 

with heatmap 
for sensor 

optimization 

Sensor 
distribution 
patterns in 

battery 
systems 

Optimize 
temperature 

sensors to detect 
TR (thermal 

runaway) positions 

Correlation 
threshold of 
0.85 used to 

identify 
optimal 
sensors 

Future ML model 
development and 
validation under 
varied operating 

conditions 

Huang et 
al. (2024) 

ML-based 
battery health 

assessment 
using 

extracted 
features 

NASA Battery 
Dataset 

Accurate battery 
health prediction 

Prediction 
metrics 

below 4% 

Needs more real-
world validation and 
generalization across 

battery types 

Xie et al. 
(2024) 

Swarm of 
RVFL neural 

networks 
with domain 
adaptation 

NASA & 
CALCE open-

source 
datasets 

Estimation without 
target labels 

RMSE < 2% Requires further 
improvement on 
unlabeled data 

robustness 

Pan & Ji 
(2024) 

BOA-ELM 
model with 

IC curve 
features 

NASA & 
CACLE 
battery 
datasets 

Accurate RUL 
prediction 

MAE & 
RMSE < 2% 

Further enhancement 
of robustness and 

model adaptability 

Chen et 
al. (2023) 

Thin-film 
heat flux 

sensor 
optimization 
using thermal 

resistance 
variation 

Thermal 
experiments 

on HFS 
membrane 

Improve sensor 
sensitivity and heat 

flux response 

R² = 0.99996 
indicating 

strong 
linearity 

Needs scaling to 
practical battery 

systems 

Li et al. 
(2021) 

Recursive 
Least Squares 

with 
regression 

model 

NASA Battery 
Dataset 

Real-time battery 
capacity estimation 

Avg. error = 
2.57% 

Better indicators 
needed beyond 

internal resistance 
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III. METHODOLOGY  
This project's major focus is to establish a quick and precise framework for the early 
identification of thermal runaway in lithium-ion batteries utilizing sensors & the NASA Battery 
Database. Research is done with a goal of merging CNN and Bat Optimization to increase the 
dependability of predictions, support preventive maintenance, and moreover, the safety and 
reliability of the batteries in real-life scenarios. The technique flowchart described in the section 
is seen in Figure 1. 

 
Fig. 1. Flowchart Representation of the Early Prediction of Thermal Runaway in Sensor 

Batteries 
 

Every step of the flowchart is briefly explained in this section: 
A. Data Analysis 
This study employed NASA Battery Dataset sourced from Kaggle . The collection consists of Li-
ion battery aging trials conducted in MATLAB and supplied in .mat file format. It has a size of 
approximately 210 MB and is categorized according to battery cell, cycle number and 
measurement time steps and some cells even have up to 168 cycles, instead of a single flat table. 

 
Fig. 2. Correlation Heatmap 
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The correlation heatmap of battery features is displayed in Figure 2, showing that there are 
strong positive relationships among the charge-related variables and strong negative 
correlations between RUL and several features. The discharge metrics also show different 
patterns, which contribute to the identification of the major factors that affect battery health and 
aging. 

 
Fig. 3. Distribution of Remaining Useful Life (RUL) 

 
In Figure 3, a histogram of RUL (remaining cycles) is shown, which indicates a strong skew 
toward the lower side, while the majority of the samples are below the 50-cycle mark. With the 
increase in RUL, frequency steadily drops, meaning that there are fewer and fewer batteries 
coming with long remaining life. The trend line reinforces the general degradation mode. 

 
Fig. 4. Capacity Degradation 

 
In Figure 4, the battery capacity is displayed against cycles and a clear degradation trend over 
time is shown. Despite the gradual decrease in the overall capacity, there are still some 
fluctuations and occasional sharp drops, which suggest that certain cycles behaved irregularly. 
Thus, the battery aging process was non-linear and unstable, as indicated by this pattern. 
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B. Data Preprocessing 
To get the dataset ready for investigation and modelling, completed a number of crucial 
activities throughout the data preparation step. The pre-processing steps involved in this study 
are defined below:  

 Handling Missing Values: Inaccurate findings with more serious repercussions might arise 
from missing data values caused by uncontrolled circumstances, including faulty data 
collecting, transmission, or storage systems.  Ignoring missing data might result in serious 
issues with managing an asset that provides a service in an essential electrical network. 

 Z-score normalization: Zero normalization, or Z-score normalization, is achieved by 
dividing the mean as well as the standard deviation of each feature in a training set by a 
number of variables. For every attribute, the mean & standard deviation are calculated.  The 
generic Equation (1) specifies the process to be carried out: 

  (1) 

where, the average of c is μNd its standard deviation is σ. 

 Removing Outliers: Outlier removal consists of identifying and eliminating data points that 
are much different from the remaining data points. As a result, the data's reliability has 
enhanced, noise is lowered, and consequently, analysis and model performance are more 
accurate. 

 
C. Data Splitting 
Training as well as testing databases are produced from the analyzed data.  In this instance, the 
split ratio is 70-30%.  The system has been trained using 70% of the data, and its efficiency is 
tested using the remaining 30%.  
 
D. Proposed Approach: CNN with Bat Optimization 
CNN is a popular deep learning method for applications like image categorization and 
identification [14], as well as image regression. Convolutional, pooling, & fully linked layers 
make up a CNN. Convolutional elements and fully linked layers, which operate identically to a 
basic ANN, make up a CNN [15], using several layers of neurons for learning after receiving the 
data produced from the convolutional layers. Equation (2) refers to the formula that the 
convolutional layers use to execute convolution procedures on the input images: 

               (2) 

 
where x_(i,j)^l  is the input group situated in the l-th layer with the centre position at (i,j) , 
w_k^l  and b_k^l  Are the weight vector and bias term of the k-th convolution kernel of the l-th 
layer, respectively, and , z_(i,j,k)^lis the value at (i,j)  In the k-th feature map of the l-th  layer. 
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Bats use their mouths to produce ultrasonic vibrations.  The bat's ears pick up the echo created 
when the ultrasonic vibrations bounce off barriers or prey [16]. The bat can fly free as well as 
hunt successfully in the darkness because it depends on the echoes for precise placement. It's 
fascinating to note that the size of the prey and the wavelength of the ultrasonic waves bats 
generate are quite similar. The author originally put forward the concept and fundamental 
structure of the BA in 2010, motivated by this circumstance. The global optimal solution may be 
found using the heuristic algorithm BA.Equation (3) may thus be used to determine the bat's 
flying speed. 

 (3) 

The BA offers an excellent worldwide discovery and optimization capability by arbitrarily 
varying the frequency.  The local exploitation capability is enhanced by varying the pulse 
emission rate and loudness. The BA controls the community's unpredictable behavior using 
tuning tools. 

 
 

IV. EXPERIMENTAL SIMULATIONS AND PERFORMANCE 
The operating system for the model was Ubuntu 22.04, and it was developed using the PyTorch 
2.2.0 framework. The hardware setup was made up of an AMD EPYC 7402 24-Core Processor 
and an NVIDIA GeForce RTX 4090 GPU with 24GB of memory, both situated in Santa Clara, 
California, USA. 
 
A. Performance Measures 
Leveraging the NASA database, the generated RUL prediction system underwent rigorous 
testing to verify its accuracy and robustness. The effectiveness of the suggested method is 
assessed using three main metrics: root means square error (RMSE), mean absolute error 
(MAE), and R2-score (coefficient of determination). The algorithm is frequently assessed using a 
variety of performance indicators, such as MAE, R2-score, and root mean squared error (RMSE). 
Improved performance is shown by lower MAE & RMSE values, whereas an elevated R2-score 
denotes a better capacity for forecasting outcomes. An R2-score around 1 denotes a more 
precise estimation, but the prediction accuracy rises as RMSE and MAE go closer to zero.  
Equations (4) (6) provide the following formulations for performance metrics: 

  (4) 

  (5) 
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  (5) 

B. Result Demonstrations 
The performance of the Bat-optimized CNN model for predicting early thermal runaway was 
very strong, as indicated by Table II. This is evidenced by the high R² value of 99.8% and the 
very low RMSE and MAE, which indicate great accuracy and nearly no prediction errors. 
 

TABLE II. MODEL PERFORMANCE FOR EARLY PREDICTION OF THERMAL RUNAWAY 
IN SENSOR BATTERIES 

Metrics CNN with Bat Optimization 

R2 99.8 

RMSE 0.0065 

MAE 0.0043 

 
Fig. 5. Actual vs. Predicted Capacity prediction of the Battery 

 
Figure 5 visualizes the actual vs predicted simulations of the approach. The falling trend of both 
curves suggests that the capacity has been losing its quality over the cycles. Although predicted 
ratios are quite similar to the expected measurements, they often fall short of the expected 
capacity values. In later cycles, they are falling short of the expected values the most. 

 
Fig. 6. RUL prediction of the Capacity of the Battery 
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Figure 6 shows the comparison of actual and predicted battery capacity against cycles along 
with a dotted line illustrating the RUL threshold. The two curves, though fluctuating, are 
declining and the prediction is very close to the actual trend but slightly underestimates 
capacity in the later cycles, which is helpful in the assessment of remaining useful life. 

 
Fig. 7. Learning Curve of the Model with Best Epoch 

 
Training & validation losses are plotted against epochs in Figure 7, and the result is a very quick 
drop at the beginning followed by the convergence to a very low value. Validation loss, while 
fluctuating, is gradually getting stabilized and epoch 819 is marked as the one with the highest 
performance. 
 
C. Comparative Evaluation 
A comparison of early thermal runaway prediction methods through datasets and machine 
learning models is shown in Table III. The suggested CNN with Bat Optimization model 
applied on NASA Battery Data obtains the best R² value of 99.8%, leaving behind other 
techniques like the 1D model (87.0%), SVM (79.0%), Random Forest (92.4%), and Decision Tree 
(91.0%). Thus, it was able to prove its superior prediction performance. 
TABLE III. COMPARATIVE ANALYSIS ON EARLY PREDICTION OF THERMAL RUNAWAY 

IN SENSOR BATTERIES 
Reference Dataset Approach R2 

[17] EVERLASTING Data 1D model (NN1) 87.0 

[18] Open Battery Failure Data SVM 79.0 

[19] Real-World Data RF 92.4 

[20] Original Data from Lithium 
Iron Phosphate Battery 

DT 91.0 

Proposed NASA Battery Data CNN with Bat 
Optimization 

99.8 

 
The CNN model that was recently proposed and incorporated with Bat Optimization not only 
immensely surpasses the existing methods but also asserts its strengths in the areas of precision, 
generalization, and alignment with the actual fluctuations in battery capacity. Consequently, it 
has been an amazing and trustful tool for the prediction of thermal runaway at its very early 
stage. 



 
International Journal of Core Engineering & Management 

Volume-8, Issue-01, 2025           ISSN No: 2348-9510 

221 

 
 
 
 

 
V. CONCLUSION AND FUTURE SCOPE 

Through the use of sensors, it is possible to supervise characteristics, including voltage and 
temperature, throughout the battery's life cycle. It provides an opportunity for the system of 
thermal test warning systems that looks for abnormal behavior in the parameters under 
supervision. In fact, the suggested Bat-optimized CNN model turned out to be a very useful 
instrument for the early detection of thermal runaway in lithium-ion batteries. With the help of 
the NASA Battery Dataset and good pre-processing techniques, the model not only reached a 
high level of accuracy in making predictions but also exhibited robustness, as indicated by the 
R² value of 99.8% and very small RMSE and MAE. The model's excellent generalization and 
ability to adapt to actual battery degradation patterns were once again confirmed by the 
projections' excellent agreement with the true capacity as well as RUL trends.  Its superiority 
over alternative techniques was further confirmed by the comparison research, resulting in a 
promising and reliable choice for preventative safety systems as well as battery health 
monitoring.  This mechanism is a big help in ensuring that batteries last long and operate safely 
for critical operations. 
 
The future research can possibly target utilizing real-time battery monitoring, multi-sensor 
fusion and transfer learning instead to improve the generalization capacity over different 
battery types. Furthermore, the augmentation of the dataset along with trials in real-life 
scenarios might lead to increased reliability. On top of that, the combination of different 
optimization methods and explainable AI could lead to more accurate and interpretable 
predictions for the purpose of deployment in a real-world environment. 
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