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Abstract

Lithium-ion batteries, the technology of choice in the energy storage industry today, are unable
to totally prevent thermal runaway (TR) incidents. In this sense, using real-time monitoring as
well as warning mechanisms for the batteries is not just crucial but also extremely beneficial as
they enable the identification of the battery's protection state and the prompt removal of any
potential safety hazards. The presented research describes a novel way for the thermal runaway
prediction in lithium-ion batteries to be detected at an early stage using the NASA Battery
Dataset from Kaggle. The dataset comprises the voltage, current, temperature, and EIS time
series measurements altogether, stored in MATLAB .mat files and organized according to
battery cell and then cycle number. A very thorough pre-processing of the data was done—
missing values were replaced, Z-score normalization was applied, and outliers were removed.
To enhance the model's performance, a convolutional neural network (CNN) using Bat
Optimization was proposed. The model was exceptionally accurate with an R? score of 99.8%
and very low values of RMSE and MAE, thus surpassing the existing methods like SVM,
Random Forest, and 1D models. Visualization results indicated that the actual and the
predicted capacity trends had very close alignment, and there was also reliable RUL estimation
and stable learning behaviour. Thus, the CNN optimized by Bat has proved to be a strong
predictor, the possessing of superb learning capability, and the high reliability making it the
ideal solution for battery systems' early thermal runaway prediction.

Keywords: Lithium-ion Batteries, Predictive Maintenance, Battery Health Monitoring,
Thermal Runaway, RUL Estimation.

I. INTRODUCTION
The lithium-ion battery (LIB) has emerged as the primary energy storage medium across
different sectors such as transport, electric power grid and personal electronics due to its
significant breakthroughs in efficiency and cost reduction during the last ten years. However,
battery malfunctions result in major issues like explosions and fires in robotics, cellphones, and
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aero planes [1]. The primary indicators of serious battery failure include mechanical, electrical,
thermal, as well as electrochemical misuse. A battery cell's unregulated chemical reaction
known as thermal runaway can result in a devastating fire. If a battery above certain
temperature thresholds, chain reactions involving heat, temperature, as well as chemical
reactions may take place [2][3]. Because of their pressure build-up design, cylindrical cells are
particularly vulnerable to explosion. Thermal runaway prediction models depending on the
cellular inner workings are espoused in the search for quicker warning system for known
truthful ways.

The sensor that is not functioning properly in the battery management systems (BMSs) leads to
important errors in state estimation, hence affecting the reliability of the system. In particular, if
voltage sensors do not function correctly, the BMS not be able to set the correct charge limits.
This, in turn, leads to overcharging/undercharging cycles, which are operational anomalies.
Such deviations make the cells deteriorate faster because they exposed to non-ideal
electrochemical conditions and eventually, internal short circuits might happen. The current
errors in sensors have a direct effect on the calculations of the state of charge (SOC), thus,
making it impossible for the BMS to exercise proactive equalization management.

The precise evaluation of battery health and the creation of battery systems with dependable
operation and maintenance are the most important factors in increasing battery life and safety.
It is widely acknowledged that predictive maintenance is the bedrock application in adhering to
the "IT" manufacturing vision; being based upon the proactive practice of diagnosing potential
equipment faults by utilizing data analysis and artificial intelligence (AI) [4]. This necessitates
the uninterrupted supervision of the state of the machines, the evaluation through artificial
intelligence, and the forecast of the breakdowns of the machines for the preventive maintenance
to be carried out in time [5]. The conventional battery management system (BMS) usually uses
external sensors (voltage, current, and temperature) for battery monitoring. These systems can
be enhanced with a large amount of publicly available sensor data. For the purpose of analyzing
this sensor data, the implementation of certain advanced data analysis techniques is being
considered [6], to deal with extensive multidimensional data and automatically pick up
complex behavioral pattern strands. Supervised machine learning capabilities have been
exploited to perform greater accuracy in classification and handle non-linear relationships in
datasets efficiently, hence making them suitable for separating behaviors Deep learning (DL) is
a division of machine learning (ML) that stresses on the utilization of multilayered neural
networks (NNs) for learning which in fact, comprise a great number of parameters. Deep
learning, through its multiple layers of abstraction, is capable of collecting features directly from
raw data [7], thereby, pattern recognition becomes more complex, it can even detect the non-
linear traits of batteries in real-time, thus proving its high adaptability to different battery types.
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A. Motivation and Contribution of the Study

In a lot of critical applications, Lithium-ion batteries have become the best choice and along

with this, safety problems like thermal runaway need very precise early detection systems.

Conventional BMS sensors are not very dependable and hence they lead to wrong state

estimation, thereby heightening the risk of failure. So, it is the right time for the machine

learning-assisted smart, data-driven methods to take over, which could make it possible to

achieve real-time monitoring, predictive maintenance, and safer battery operations. The

following are the primary findings of this study

o Leveraged the NASA Battery Dataset on time-series Li-ion battery aging patterns with close
and broad-based time measurements.

e The thorough pre-processing outline briefly involved processing from early stages for
missing-values management (removal), Z-score normalization, and outlier detection.

e Proposed a novel structure that merges Convolutional Neural Network (CNN) with the Bat
Algorithm in a controlling manner for the purpose of forecasting enhanced results.

e This model brought an impressive R2 of 99.8% and had very low RMSE and MAE values.

B. Significance of the Study

This investigation is significant as it marks a strong and accurate strategy for predicting the
thermal runaway in Lithium-Ion batteries at an initial phase, resulting in a safe and healthy
management of the batteries. Additionally, the technique integrates CNN with Bat
Optimization to boost forecasting accuracy, full preventive maintenance support, and the
provision of a solution that is advantageous to the energy storage and electric vehicle industries
in actual scenarios.

C. Organization of the Research

The organization of the paper is as follows: In Section II, the existing studies on Early Prediction
of Thermal Runaway in Sensor Batteries are reviewed, Section III describes the methodology
which consists of dataset and model implementation, Section IV discusses performance, results
and comparisons of the models, and finally Section V wraps up with insights and future
research directions.

II. LITERATURE REVIEW
The various research articles highlight the usage of ML and optimization techniques for the
timely prediction of thermal runaway in sensor-equipped battery systems, with special
attention to health estimation, RUL forecasting, SoC prediction, and energy management.

Daniels, Kumar and Prabhakar's (2024) work aims to optimize the temperature sensors for all
the chosen sensor distribution patterns, which could be further used to develop an ML model
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and test its accuracy in predicting the cell position undergoing TR in the battery domain within
the multiple operation conditions. To identify the optimized sensors, the Pearson Correlation
Coefficient (heat map) optimization strategy is implemented by analyzing the correlations
between temperature sensors and potential fault positions based on the coefficient limiting
threshold of 0.85 [8].

Huang et al. (2024) the validation of the method was done with the NASA battery dataset and
then it was assessed through different representative machine-learning techniques for an
accurate battery health evaluation. Some performance metrics have been used, in order to
validate the methodology. It has been revealed that the models trained with the suggested
features are more accurate than the models trained with a single feature, as the prediction
metrics are below 4% [9].

Xie et al. (2024). This framework merges a group of RVFL neural networks that are enhanced
with domain adaptation in order to yield precise estimates. Cross-validation skill has been
conducted on battery data sets NASA and CALCE which were publicly available. The
verification results show that the proposed framework can ensure that the root mean square
error (RMSE) is less than 2% in the absence of target labels [10].

Pan and Ji (2024) finally, the algorithm model validation is carried out with NASA and CACLE
battery dataset, & the findings outlines that the model prediction method based on the charging
IC curve and BOA-ELM can predict the RUL of battery more accurately than other models, and
the values of MAE and RMSE are lower than 2%, with better prediction accuracy and
robustness [11].

Chen et al. (2023) The heat flow has a positive relationship with the temperature differential on
the HFS membrane's bottom surface. The temperature difference grew from 0.034 K to 0.251 K
as the measured thickness of the thermal resistance layer increased from 2 pm to 15 pm.
Furthermore, there is a strong linear correlation (R2 = 0.99996) between the temperature
variation as well as the thickness of the thermally resistant layer, indicating that the thin-film
heat flux sensors' effectiveness is additionally optimized when the thickness of the layer varies
[12].

Li et al. (2021) the battery's remaining capacity is then assessed in real time by feeding the
calculated RC model parameters through a multivariate regression model. With an overall
inaccuracy of 2.57%, which is larger than conventional approaches that just employ ohmic
internal resistance for their indication, results from studies employing the NASA battery
database demonstrate the reliability of the suggested approach [13].
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The relevant systems present Table I for the research background on methodology,
dataset/environment, problems addressed by the researchers, performance, and prior/future

work.
TABLE I. REVIEW OF LITERATURE ON EARLY PREDICTION OF THERMAL RUNAWAY
IN SENSOR BATTERIES
Author | Methodology Dataset Problem Performance Future Work /
Addressed Limitation
Daniels, Pearson Sensor Optimize Correlation Future ML model
Kumar & | Correlation distribution temperature threshold of development and
Prabhakar | Coefficient patterns in sensors to detect 0.85 used to validation under
(2024) with heatmap battery TR (thermal identify varied operating
for sensor systems runaway) positions optimal conditions
optimization Sensors
Huang et ML-based NASA Battery | Accurate battery Prediction Needs more real-
al. (2024) | battery health Dataset health prediction metrics world validation and
assessment below 4% generalization across
using battery types
extracted
features
Xie et al. Swarm of NASA & Estimation without | RMSE < 2% Requires further
(2024) RVFL neural | CALCE open- target labels improvement on
networks source unlabeled data
with domain datasets robustness
adaptation
Pan & Ji BOA-ELM NASA & Accurate RUL MAE & Further enhancement
(2024) model with CACLE prediction RMSE <2% of robustness and
IC curve battery model adaptability
features datasets
Chen et Thin-film Thermal Improve sensor R2 =10.99996 Needs scaling to
al. (2023) heat flux experiments | sensitivity and heat | indicating practical battery
sensor on HFS flux response strong systems
optimization membrane linearity
using thermal
resistance
variation
Lietal Recursive NASA Battery | Real-time battery | Avg. error = Better indicators
(2021) Least Squares Dataset capacity estimation 2.57% needed beyond
with internal resistance
regression
model
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III. METHODOLOGY

This project's major focus is to establish a quick and precise framework for the early
identification of thermal runaway in lithium-ion batteries utilizing sensors & the NASA Battery
Database. Research is done with a goal of merging CNN and Bat Optimization to increase the
dependability of predictions, support preventive maintenance, and moreover, the safety and
reliability of the batteries in real-life scenarios. The technique flowchart described in the section

is seen in Figure 1.
Collected the NASA Batery
Dataset from Kaggle
| Handling missing
values

Z-score normalization

Bemoving outliers

Performance Evaluation using
regression parameters, namely, R,
RMSE, and MAE Bl

Fig. 1. Flowchart Representation of the Early Prediction of Thermal Runaway in Sensor
Batteries

Every step of the flowchart is briefly explained in this section:

A. Data Analysis

This study employed NASA Battery Dataset sourced from Kaggle . The collection consists of Li-
ion battery aging trials conducted in MATLAB and supplied in .mat file format. It has a size of
approximately 210 MB and is categorized according to battery cell, cycle number and
measurement time steps and some cells even have up to 168 cycles, instead of a single flat table.
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Fig. 2. Correlation Heatmap
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The correlation heatmap of battery features is displayed in Figure 2, showing that there are
strong positive relationships among the charge-related variables and strong negative
correlations between RUL and several features. The discharge metrics also show different
patterns, which contribute to the identification of the major factors that affect battery health and

aging.
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Fig. 3. Distribution of Remaining Useful Life (RUL)

In Figure 3, a histogram of RUL (remaining cycles) is shown, which indicates a strong skew
toward the lower side, while the majority of the samples are below the 50-cycle mark. With the
increase in RUL, frequency steadily drops, meaning that there are fewer and fewer batteries
coming with long remaining life. The trend line reinforces the general degradation mode.
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Fig. 4. Capacity Degradation

In Figure 4, the battery capacity is displayed against cycles and a clear degradation trend over
time is shown. Despite the gradual decrease in the overall capacity, there are still some
fluctuations and occasional sharp drops, which suggest that certain cycles behaved irregularly.
Thus, the battery aging process was non-linear and unstable, as indicated by this pattern.
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B. Data Preprocessing

To get the dataset ready for investigation and modelling, completed a number of crucial

activities throughout the data preparation step. The pre-processing steps involved in this study

are defined below:

¢ Handling Missing Values: Inaccurate findings with more serious repercussions might arise
from missing data values caused by uncontrolled circumstances, including faulty data
collecting, transmission, or storage systems. Ignoring missing data might result in serious
issues with managing an asset that provides a service in an essential electrical network.

e Z-score normalization: Zero normalization, or Z-score normalization, is achieved by
dividing the mean as well as the standard deviation of each feature in a training set by a
number of variables. For every attribute, the mean & standard deviation are calculated. The
generic Equation (1) specifies the process to be carried out:

. c="F (1)

where, the average of c is pNd its standard deviation is o.

¢ Removing Outliers: Outlier removal consists of identifying and eliminating data points that
are much different from the remaining data points. As a result, the data's reliability has
enhanced, noise is lowered, and consequently, analysis and model performance are more
accurate.

C. Data Splitting

Training as well as testing databases are produced from the analyzed data. In this instance, the
split ratio is 70-30%. The system has been trained using 70% of the data, and its efficiency is
tested using the remaining 30%.

D. Proposed Approach: CNN with Bat Optimization

CNN is a popular deep learning method for applications like image categorization and
identification [14], as well as image regression. Convolutional, pooling, & fully linked layers
make up a CNN. Convolutional elements and fully linked layers, which operate identically to a
basic ANN, make up a CNN [15], using several layers of neurons for learning after receiving the
data produced from the convolutional layers. Equation (2) refers to the formula that the

convolutional layers use to execute convolution procedures on the input images:

1 _ T 1
Zijx = Wi *Xj+ Db (2)

where x_(i,j)* is the input group situated in the l-th layer with the centre position at (i) ,
w_k”l and b_k”l Are the weight vector and bias term of the k-th convolution kernel of the I-th
layer, respectively, and , z_(i,j,k)"lis the value at (ij) In the k-th feature map of the 1-th layer.
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Bats use their mouths to produce ultrasonic vibrations. The bat's ears pick up the echo created
when the ultrasonic vibrations bounce off barriers or prey [16]. The bat can fly free as well as
hunt successfully in the darkness because it depends on the echoes for precise placement. It's
fascinating to note that the size of the prey and the wavelength of the ultrasonic waves bats
generate are quite similar. The author originally put forward the concept and fundamental
structure of the BA in 2010, motivated by this circumstance. The global optimal solution may be
found using the heuristic algorithm BA.Equation (3) may thus be used to determine the bat's
flying speed.

V;‘t = Vit_l + (Sit_l — BestS) x Q; ©

The BA offers an excellent worldwide discovery and optimization capability by arbitrarily
varying the frequency. The local exploitation capability is enhanced by varying the pulse
emission rate and loudness. The BA controls the community's unpredictable behavior using
tuning tools.

IV. EXPERIMENTAL SIMULATIONS AND PERFORMANCE

The operating system for the model was Ubuntu 22.04, and it was developed using the PyTorch
2.2.0 framework. The hardware setup was made up of an AMD EPYC 7402 24-Core Processor
and an NVIDIA GeForce RTX 4090 GPU with 24GB of memory, both situated in Santa Clara,
California, USA.

A. Performance Measures

Leveraging the NASA database, the generated RUL prediction system underwent rigorous
testing to verify its accuracy and robustness. The effectiveness of the suggested method is
assessed using three main metrics: root means square error (RMSE), mean absolute error
(MAE), and R2-score (coefficient of determination). The algorithm is frequently assessed using a
variety of performance indicators, such as MAE, R2-score, and root mean squared error (RMSE).
Improved performance is shown by lower MAE & RMSE values, whereas an elevated R2-score
denotes a better capacity for forecasting outcomes. An R2-score around 1 denotes a more
precise estimation, but the prediction accuracy rises as RMSE and MAE go closer to zero.
Equations (4) (6) provide the following formulations for performance metrics:

RMSE = |30 0% - 910° @)

1 ke —Yk)
MAE =>yn_ | Q)
L5 | S0 )
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B. Result Demonstrations
The performance of the Bat-optimized CNN model for predicting early thermal runaway was
very strong, as indicated by Table II. This is evidenced by the high R? value of 99.8% and the
very low RMSE and MAE, which indicate great accuracy and nearly no prediction errors.

TABLE II. MODEL PERFORMANCE FOR EARLY PREDICTION OF THERMAL RUNAWAY

IN SENSOR BATTERIES
Metrics CNN with Bat Optimization
R2 99.8
RMSE 0.0065
MAE 0.0043

1.450 4 — expected

—— prediction

1.425 -

1.400 4

13751

1.350 4

Capacity

1.325 1

1.300 4

1.275 1

0 10 20 30 40 50
Cycle No

Fig. 5. Actual vs. Predicted Capacity prediction of the Battery

Figure 5 visualizes the actual vs predicted simulations of the approach. The falling trend of both
curves suggests that the capacity has been losing its quality over the cycles. Although predicted
ratios are quite similar to the expected measurements, they often fall short of the expected
capacity values. In later cycles, they are falling short of the expected values the most.
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Fig. 6. RUL prediction of the Capacity of the Battery
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Figure 6 shows the comparison of actual and predicted battery capacity against cycles along
with a dotted line illustrating the RUL threshold. The two curves, though fluctuating, are
declining and the prediction is very close to the actual trend but slightly underestimates
capacity in the later cycles, which is helpful in the assessment of remaining useful life.

—— Training Loss

—— WValidation Loss
1z o ®  Best Epoch: 819

1.0 o

LE

Loss

L X
LT x
0z -

o0 o . D T S =

o 200 a00 s00 500 1000
Epoch

Fig. 7. Learning Curve of the Model with Best Epoch

Training & validation losses are plotted against epochs in Figure 7, and the result is a very quick
drop at the beginning followed by the convergence to a very low value. Validation loss, while
fluctuating, is gradually getting stabilized and epoch 819 is marked as the one with the highest
performance.

C. Comparative Evaluation

A comparison of early thermal runaway prediction methods through datasets and machine
learning models is shown in Table III. The suggested CNN with Bat Optimization model
applied on NASA Battery Data obtains the best R? value of 99.8%, leaving behind other
techniques like the 1D model (87.0%), SVM (79.0%), Random Forest (92.4%), and Decision Tree
(91.0%). Thus, it was able to prove its superior prediction performance.

TABLE III. COMPARATIVE ANALYSIS ON EARLY PREDICTION OF THERMAL RUNAWAY

IN SENSOR BATTERIES
Reference Dataset Approach R2
[17] EVERLASTING Data 1D model (NN1) 87.0
[18] Open Battery Failure Data SVM 79.0
[19] Real-World Data RF 92.4
[20] Original Data from Lithium | DT 91.0
Iron Phosphate Battery
Proposed NASA Battery Data CNN  with Bat | 99.8
Optimization

The CNN model that was recently proposed and incorporated with Bat Optimization not only
immensely surpasses the existing methods but also asserts its strengths in the areas of precision,
generalization, and alignment with the actual fluctuations in battery capacity. Consequently, it
has been an amazing and trustful tool for the prediction of thermal runaway at its very early
stage.
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V. CONCLUSION AND FUTURE SCOPE

Through the use of sensors, it is possible to supervise characteristics, including voltage and
temperature, throughout the battery's life cycle. It provides an opportunity for the system of
thermal test warning systems that looks for abnormal behavior in the parameters under
supervision. In fact, the suggested Bat-optimized CNN model turned out to be a very useful
instrument for the early detection of thermal runaway in lithium-ion batteries. With the help of
the NASA Battery Dataset and good pre-processing techniques, the model not only reached a
high level of accuracy in making predictions but also exhibited robustness, as indicated by the
R? value of 99.8% and very small RMSE and MAE. The model's excellent generalization and
ability to adapt to actual battery degradation patterns were once again confirmed by the
projections' excellent agreement with the true capacity as well as RUL trends. Its superiority
over alternative techniques was further confirmed by the comparison research, resulting in a
promising and reliable choice for preventative safety systems as well as battery health
monitoring. This mechanism is a big help in ensuring that batteries last long and operate safely
for critical operations.

The future research can possibly target utilizing real-time battery monitoring, multi-sensor
fusion and transfer learning instead to improve the generalization capacity over different
battery types. Furthermore, the augmentation of the dataset along with trials in real-life
scenarios might lead to increased reliability. On top of that, the combination of different
optimization methods and explainable AI could lead to more accurate and interpretable
predictions for the purpose of deployment in a real-world environment.

REFERENCES

1. V. Panchal, “Thermal and Power Management Challenges in High-Performance Mobile
Processors,” Int. ]J. Innov. Res. Sci. Eng. Technol, vol. 13, no. 11, 2024, doi:
10.15680/IJIRSET.2024.1311014.

2. R. Patel and R. Tandon, “Advancements in Data Center Engineering: Optimizing Thermal
Management, HVAC Systems, and Structural Reliability,” Int. J. Res. Anal. Rev., vol. 8, no.
2,2021.

3. P.B. Patel, “Thermal Efficiency and Design Considerations in Liquid Cooling Systems,” Int.
J. Eng. Sci. Math., vol. 10, no. 3, pp. 181-195, 2021.

4. J. Thomas, K. V. Vedi, and S. Gupta, “Enhancing Supply Chain Resilience Through Cloud-
Based SCM and Advanced Machine Learning: A Case Study of Logistics,” J. Emerg.
Technol. Innov. Res., vol. 8, no. 9, 2021.

5. V. Pal and S. K. Chintagunta, “Transformer-Based Graph Neural Networks for Real-Time
Fraud Detection in Blockchain Networks,” pp. 1401-1411, 2023, doi: 10.48175/1JARSCT-
11978Y.

221



i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-8, Issue-01, 2025 ISSN No: 2348-9510

10.

11.

12.

13.

14.

15.

16.

17.

Y. Macha and S. K. Pulichikkunnu, “A Survey of DevOps Practices for Machine Learning
and Artificial Intelligence Workflows in Modern Software Development,” ESP ]. Eng.
Technol. Adv., vol. 4, no. 3, pp. 200-208, 2024, doi: 10.56472 /25832646 /JETA-V4I3P121.

R. Patel, “Automated Threat Detection and Risk Mitigation for ICS (Industrial Control
Systems) Employing Deep Learning in Cybersecurity Defence,” Int. J. Curr. Eng. Technol.,
vol. 13, no. 06, pp. 584-591, 2023, doi: 10.14741/ijcet/v.13.6.11.

R. K. Daniels, V. Kumar, and A. Prabhakar, “Single Plane Temperature Sensors Placement
Optimization for Aligned Air-Cooled Cylindrical LiB Module,” in 2024 IEEE 4th
International Conference on Sustainable Energy and Future Electric Transportation (SEFET),
2024, pp. 1-6. doi: 10.1109/SEFET61574.2024.10718237.

S. Huang, H. Liu, Z. Zhuang, C. Cai, R. Zeng, and J. Huang, “Battery Health Prediction
Based on Multi-Parameter Charging Feature Identification,” in 2024 6th International
Conference on Energy, Power and Grid (ICEPG), 2024, pp. 417-420. doi:
10.1109/ICEPG63230.2024.10775597.

K. Xie, B. Gou, Y. Wang, and S. Yang, “A Transfer Learning-Based Data-Driven Method for
State-of-Health Estimation of Lithium-Ion Batteries,” in 2024 Energy Conversion Congress &
Expo Europe (ECCE Europe), 2024, pp. 1-8. doi: 10.1109/ ECCEEurope62508.2024.10752027.
Y. Pan and J. Ji, “Remaining Useful Life Prediction of Lithium Battery Based on Charging IC
Curve and Improved ELM,” in 2024 4th International Conference on Energy Engineering
and Power Systems (EEPS), 2024, pp. 871-875. doi: 10.1109/ EEPS63402.2024.10804485.

H. Chen, A. Hou, Y. Wang, and B. Dai, “Ultra-High Sensitivity Thin Film Heat Flux Sensor
for Battery Thermal Runaway Monitoring,” in 2023 3rd New Energy and Energy Storage
System  Control = Summit Forum  (NEESSC), 2023, pp. 389-394. doi:
10.1109/NEESSC59976.2023.10349299.

Y. Li, H. Zhu, ]J. Zheng, and Y. Chen, “A Multivariate Regression Method for Battery
Remaining Capacity Based on Model Parameter Identification,” in 2021 3rd International
Academic Exchange Conference on Science and Technology Innovation (IAECST), 2021, pp.
1120-1124. doi: 10.1109/IAECST54258.2021.9695670.

G. Sarraf and V. Pal, “Adaptive Deep Learning for Identification of Real-Time Anomaly in
Zero-Trust Cloud Networks,” vol. 4, no. 3, pp. 209-218, 2024, doi: 10.56472 /25832646 /JETA-
V4I3P122.

V. Verma, “Deep Learning-Based Fraud Detection in Financial Transactions: A Case Study
Using Real-Time Data Streams,” vol. 3, no. 4, pp. 149-157, 2023, doi:
10.56472 /25832646 /JETA-V3I8P117.

D. Ge, Z. Zhang, X. Kong, and Z. Wan, “Extreme Learning Machine Using Bat Optimization
Algorithm for Estimating State of Health of Lithium-Ion Batteries,” Appl. Sci., vol. 12, no. 3,
p. 1398, Jan. 2022, doi: 10.3390/app12031398.

Q. Mayemba, G. Ducret, A. Li, R. Mingant, and P. Venet, “General Machine Learning
Approaches for Lithium-lon Battery Capacity Fade Compared to Empirical Models,”
Batteries, vol. 10, no. 10, p. 367, Oct. 2024, doi: 10.3390/batteries10100367.

222



&

iJCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

18. Y. Choi and P. Park, “Thermal Runaway Diagnosis of Lithium-Ion Cells Using Data-Driven
Method,” Appl. Sci., vol. 14, no. 19, p. 9107, Oct. 2024, doi: 10.3390/app14199107.

19. H. Kumar, “Predictive Modeling and Fault Detection of Thermal Runaway in Lithium-Ion
Batteries,” vol. 11, no. 7, pp. 3889-3892, 2024.

20. I. Kaur, M. Singh, and S. S. Kasana, “Early Detection of Fire in EV Battery Using Machine
Learning Approach,” 2023 IEEE Int. Conf. Metrol. Ext. Reality, Artif. Intell. Neural Eng., pp.
741-746, 2023, doi: 10.1109/ MetroXRAINE58569.2023.10405751.

223



