

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

234

AN EFFICIENT MULTI OBJECTIVE TASK SCHEDULING TECHNIQUES IN CLOUD

COMPUTING CONTEXT USING SWARM OPTIMIZATION ALGORITHM

Vigneshwaran Thangaraju
CGI Technology and Solutions

Aldie, Virginia, USA
vigsan714@gmail.com

Abstract

Task scheduling is a critical aspect in cloud computing as it manages a number of virtualized
resources to provide efficient performance. Manual scheduling is infeasible because clients might
require thousands of virtualized assets per task in a cloud environment. The organization of tasks
aims to maximize resource utilization and distribute workloads while minimizing programming
time and expense. In this research, we present a multi-objective optimization strategy using the
Artificial Fish Swarm Algorithm (AFSA) for the use of cloud computing scheduling employment.
The proposed methodology proposes AFSA parameters initialization and preying, swarming,
following, and random behaviors to iteratively optimize task allocation. The evaluation is done
with respect to the execution cost, completion of the job time, and load-balancing volatility.
Additionally, the suggested method's performance in comparison is contrasted with that of the
Particle's solution Swarm Optimization (PSO) technique. Experimental findings indicate that
AFSA outperforms PSO in terms of execution costs, load balancing, as well as task completion
time. In particular, AFSA achieves a load balancing value of 1.16 at a task size of 150, while PSO
loses its load balancing value with the size of the task decreasing and reaches its lowest value of
0.51 at a size of 250. Additionally, AFSA always achieves optimal execution cost and task
completion time as a function of task sizes. From these findings, we derive that AFSA is the
outstanding optimization technique for Cloud-based scheduling assignments, and it guarantees
high utilization of resources, balanced workload distribution, and improved computational
performance against traditional approaches.

Keywords—Cloud computing, task scheduling, Artificial Fish Swarm Algorithm (AFSA), Particle
Swarm Optimization (PSO), load balancing, execution cost, optimization algorithms.

I. INTRODUCTION
Clients utilize an approach to cloud computing that is "pay for each use" basis, accessing services
without fully understanding hosting details and distribution regulations [1]. This reduces the
amount of time needed for businesses to shop and ascertain the logical conclusions by offering
worldwide access to a shared resource pool, such as servers for computers, file cabinets, and
internet places of confinement, upon application [2]. Customers may gradually utilize these
resources without worrying about it or having to get in touch using the establishment supplier
[3][4]. The goal of cloud organization is to give dynamic applications a user-friendly workspace.
Although a lot of study has been done, there are still issues with freight harmonizing in cloud-

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

235

related applications in the rapidly developing field of cloud computing. Static and dynamic mist
environments are used to observe load-balancing techniques. In cloud computing, effective job
scheduling is crucial, and building an algorithm requires a knowledge of load balancing from this
angle. Recently, a lot of study has been done on how to schedule tasks in the internet of things [5].

In many situations, such as computing via the cloud, distributed systems, and parallel computing,
task scheduling is essential to maximizing system performance and resource utilization.
Traditional task scheduling algorithms face challenges in effectively balancing the workload and
minimizing the execution time [6]. In order to overcome these obstacles, scientists have resorted to
artificial intelligence. The main foundation of the Swarm Intelligence (SI) approach is the collective
behaviors of biological and natural evolutionary phenomena, such as flocks of birds, schools of
fish, worms, and bees and ants [7]. The capacity of SI-based algorithms to self-learn, quick
convergence, flexibility, simple structure, insensitivity to starting parameters, and adaptation to
external variations are the primary factors contributing to their current prominence in addressing
optimization issues [8]. Through basic interaction principles, the swarm's self-organizing capacity
often achieves the changing behavior towards optimality [9][10]. However, task scheduling issues
frequently entail several competing optimization goals, such as lowering system energy
consumption and prices, boosting task completion rates, and enhancing dependability, as cloud
computing systems get more intricate and varied. Because they only concentrate on one goal and
disregard the influence of other goals, traditional single-objective optimization algorithms
frequently fail to solve these multi-objective optimization issues [11].

It is essential to research methods of multi-objective optimized performance for cloud computing
work scheduling in order to overcome this difficulty. Multi-object optimization algorithms are
capable of optimizing a set of all optimum solutions and several objective functions at the same
time, given the tradeoff between different objectives[12]. With Cloud computing systems can
operate more sustainably, dependably, and effectively with the help of these algorithms.
Furthermore, they may be utilized for thorough system performance analysis and assessment, as
well as providing a thorough guide on how to maximize cloud computing systems' overall
performance[13]. The main objective of this research is to investigate and assess how
characteristics and load balancing affect the effectiveness of the algorithm in relation to the
environment and task scheduling context, using the multi-objective swarm optimization algorithm
to determine task parameters like execution cost and completion time.

A. Motivation and Contributions
Task Scheduling is the key to efficiently utilizing resources and scalability in the face of the
complexity of cloud computing environments. Generally, workload distribution in traditional
schedulers is difficult, causing the accomplishment cost, task efficiency issues with time frames for
completion and balance of loads. The AFSA has been demonstrated to be superior to bio inspired
optimization algorithms in the dynamic environments in terms of near optimal scheduling
solutions. The objective of this study is to design a scalable and efficient task scheduling
framework for the enhancement of the cloud performance and minimization of cost of operations.

 In contrast to more traditional techniques like Particle Swarm Optimization (PSO), an
optimization model is created using AFSA to maximize job scheduling efficiency.

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

236

 Combining important performance indicators, such as load balancing, job completion time,
and execution cost, to guarantee optimal resource allocation.

 Implementation of an adaptive scheduling algorithm that dynamically responds to workload
variations, improving scalability and efficiency.

 Extensive evaluation of the proposed AFSA-based approach across different task sizes (50–250)
to validate its effectiveness.

 Comparative analysis demonstrating AFSA's superiority over PSO by achieving maximum
load balancing, thereby improving workload distribution and computational efficiency.

B. Structure of paper
The research paper is organized as follows: In the section II, bio-inspired optimization for cloud
work scheduling is reviewed. Section III describes the suggested framework based on AFSA. In
Section IV, the comparison analysis is presented. The study is concluded in Section V, which also
suggests further paths of inquiry.

II. LITERATURE REVIEW
The task-scheduling rules that are implemented One essential element of the cloud computing
system is a safe cloud, which can additionally be used for a cloud environment. The relevant
literature on task-scheduling issues is displayed in Table I. This research demonstrates the efficacy
of optimizing task arrangement within cloud computing environments, significantly enhancing
load balancing and execution cost reduction.

Archana and Kumar (2023) considered the 100 to 1000 task iteration with a task size of 50. From
the simulation results, it is stated that the values of execution time, fitness, the mean and standard
deviation of the SMO method are 6 ms, 0.0197, 0.0236, and 0.0011, respectively. In contrast, the
values for the PSO method are 57 ms, 0.5675, 0.0567, and 0.5108, respectively. SMO has been found
to effectively impact the provisioning of resources by minimizing the execution time, optimizing
the fitness value, and lowering the mean and standard deviation values [14].

Saemi et al. (2023) mentioned problem in MCC is addressed by Hybrid Multi-objective Harris
Hawks Optimization (HMHHO), a non-dominated, Harris Hawks Optimization (HHO) based
multiple-purpose approach. Allocating workloads Public cloud processors along with cloud
patches enable information processing from mobile source nodes mobile resource processors were
the goals of this study. The suggested approach often completes tasks more quickly and consumes
less energy than the supplementary four procedures: the Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), and Cuckoo Search Algorithm
(CSA)[15].

Mishra and Gupta (2023) examined scheduling heuristic techniques based on make span,
throughput, and ARUR, including RALBA, DLBA, DRALBA, Min-min, Max-min, and Smoothed
Robin, utilizing workflows on artificial workloads and Google's GoCJ datasets, which are genuine
workloads. Using both synthetic and GoCJ data, this study shows that the current DRALBA
technique performs superior than the earlier methods in terms of performance characteristics [16].

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

237

Sharma and Pandey (2022) the key execution parameters, such as It is possible to optimize
availability, makes pan time, resource utilization, energy usage, reliability, response time, etc., and
resource imbalance can be prevented. A number of algorithms, including hybrid, meta-heuristic,
and heuristic, are proposed to assist with the above indicated scheduling. The suggested VTO-
QABC is put into practice and contrasted with other approaches on the parameter throughput.
When associated to Max-Min (84.51%), MOPSO (37.82%), HABC_LJF (19.85%), Q-Learning
(7.72%), VTO-QABC_FCFS (3.89%), and VTOABC_LJF (3.89%) less time than MOCS, a notable
improvement is shown[17].

Mahmoud et al. (2022) presented a new method for allocating and completing an application's task
called job scheduling-decision trees (TS-DT). The effectiveness of the proposed TS-DT algorithm
was evaluated by comparing it with the existing algorithms, namely Heterogeneous Earliest Finish
Time (HEFT), The methodology for Order of preference by Similarities to Ideal Solution
incorporating the Experimental Weight Method (TOPSIS-EWM), and combining Q-Learning with
the Heterogeneously Earliest Finish Time (QL-HEFT). The suggested TS-DT algorithm performs
better than the current HEFT, TOPSIS-EWM, and QL-HEFT algorithms by, on average, decreasing
make span by 5.21%, 2.54%, and 3.32%, increasing reserve utilization by 4.69%, 6.81%, and 8.27%,
and enlightening load complementary by 33.36%, 19.69%, and 59.06%[18].

Devi and Winster (2022) combines Using a blockchain-based key aggregation encryption system in
conjunction using attribute-based encryption (ABE) technology to enhance job scheduling and
guarantee user data security and privacy. The study contrasts the performance of the ABE-BKAC
model and the suggested meta-heuristic with that of other methods, including BCP-ABE-PHAS,
CEVP, H3CSA, PPSO, and EDS. Superior performance is demonstrated by the experimental
results in terms of reaction time, manufacture duration, energy consumption, key generation time,
encrypting time, and time required for decryption, and completion ratio [19].

Faragardi et al. (2020) changed to take into consideration a spending limit, the HEFT algorithm.
GRP-HEFT is compared to innovative production methods for scheduling like GA (Genetic
Algorithm), PSO (Particle Swarm Optimization), and MOACS (Multi Objective Ant Colony
System). In a number of well-known scientific workflow applications on both issue sizes, the
trials' results indicate that GRP-HEFT outperforms GA by an average of 13.64 percent, PSO by
19.77 percent, and MOACS by 11.69 percent. Additionally, in rapports of temporal complexity,
GRP-HEFT performs better than GA, PSO, and MOACS [20].

The relevant work on job scheduling in cloud computing utilizing different optimization
techniques is summarized in Table I

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

238

TABLE I. OVERVIEW OF RELATED WORK ON TASK SCHEDULING IN CLOUD COMPUTING

Author Objectives Methodology Parameters Features

Archana and
Kumar (2023)

Optimise cloud
computing job
execution and
resource
provisioning.

SMO vs. PSO method for
task execution

Execution
time, fitness,
mean,
standard
deviation

Compared to PSO,
SMO optimises task
execution and
reduces execution
time

Saemi et al.
(2023)

Mobile Cloud
Computing (MCC)
multi-objective
task scheduling

Harris Hawks Optimisation
(HMHHO) against Hybrid
Multi-objective vs. GA,
ACO, PSO, and CRM

Execution
time, energy
consumption

HMHHO performs
better in job
completion and
energy efficiency

Mishra and
Gupta (2023)

Evaluate
scheduling
heuristics based on
makespan,
throughput, and
ARUR

Comparison of Google and
synthetic datasets using
Round Robin, Min-min,
Max-min, RALBA, DLBA,
and DRALBA

ARUR,
throughput,
and
makespan

DRALBA
outperforms other
scheduling
approaches

Sharma and
Pandey (2022)

Optimize resource
utilization and
execution time in
cloud scheduling

Compare VTO-QABC with
HABC_LJF, Q-Learning,
Max-Min, MOPSO, VTO-
QABC_FCFS,
VTOABC_LJF, and MOCS

Throughput,
execution
time

VTO-QABC achieves
higher throughput
and lower execution
time

Mahmoud et
al. (2022)

Improve task
allocation and load
balancing

Decision In comparison to
HEFT, TOPSIS-EWM, and
QL-HEFT, Tree-Based Task
Scheduling (TS-DT)

Makespan,
use of
resources
and balance
of load

TS-DT enhances load
balancing and
resource utilisation
while decreasing
makespan

Devi and
Winster
(2022)

Enhance task
scheduling
security using
encryption

Meta-heuristic + ABE-
BKAC vs. EDS, CEVP,
H3CSA, PPSO, BCP-ABE-
PHAS

Completion
ratio, keygen
time,
makespan,
reaction
time, and
energy usage

ABE-BKAC model
improves security
and scheduling
efficiency

Faragardi et
al. (2020)

Optimize
workflow
scheduling within
budget constraints

GRP-HEFT vs. MOACS,
PSO, GA

Execution
time, budget,
scientific
workflows

GRP-HEFT improves
execution efficiency
and time complexity

III. METHODS AND MATERIALS
In this work, the AFSA is utilized to optimize task scheduling in relation to cloud facility access,
minimizing execution costs, improving load balancing, and ultimately decreasing job completion
time. The methodology starts by defining the problem and defining the parameters, e.g., swarm
size, step length and visual distance, and set the initial AF positions to random positions. The
execution cost, load balancing variance, and task completion time are used to compute the fitness

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

239

function. Preying, swarming, following, and random behaviors, used iteratively to optimize
scheduling solutions are employed by AFSA. First, AF positions are updated in each iteration
according to their respective behaviors, and then the fitness function is recomputed. As an
alternative, a convergence check ensures termination if a predefined condition is met, such as a
minimum level of fitness increase or a limit number of iterations. The fourth option is the task
scheduling approach, which distributes jobs across virtual machines based on the best AF
locations. Also, the effectiveness of AFSA is assessed by contrasting it with PSO. The comparison
evaluates important performance indicators and shows that AFSA continuously performs better
than PSO in terms of minimizing implementation costs, load balancing, and finishing the project
time. In a cloud computing environment, Figure 1 demonstrates the systematic use of the Swarm
Optimization Algorithm for job scheduling.

Fig. 1. Flowchart of the Proposed Task Scheduling Methodology in Cloud Computing

A. Proposed Artificial Fish Swarm Algorithm

A location with a high concentration of fish is often nutrient-dense in nature. By engaging in
sophisticated behaviors like preying, swarming, following, etc., fish may identify the most
nutrient-dense location. The AFSA is an artificially intelligent system that mimics the behavioral
patterns of a population of fish. By mimicking the collective movement of artificial fish (AF), our
program can approach the global optimum. Good robustness, global search capability, parameter
setting tolerance, and insensitivity to initial values are some of the appealing aspects of the AFSA.

Figure 2 is an illustration of the AF's vision idea. According to the graph, the visual distance is
denoted by the word Visual and the step length by the term Step. X = () represents
the spatial coordinate of the AF, where is a possible solution. The objective function Y = f (X)
represents The AF's dietary composition at the moment location. is the expression
for the stance between neighbouring AF people (ith and jth), and Δ is the crowd factor.

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

240

Fig. 2. Vision concept of the artificial fish

The behavior of fish depends on examining the surrounding area until a behavior requirement is
satisfied. As a result, the AF advances to if it is conditioned to do so; if not, it keeps
examining within its field of vision.

The refreshed position can be described as Equation. (1 and 2)

 (1)

 (2)

where is a place inside the view; is the number of variables, and Rand are randomly
generated numbers between 0 and 1. Others are identical to the ones mentioned above.

Four classical activities are included in the AF structure prey, swarm, follower, however, and
unpredictable movement. individuals.

1. Preying Behavior
Preying behavior is mostly thought of as a form of food treatment. As seen in the AF visual idea, it
is an iterative method of transitioning to a more nutrient-dense location within the framework of
an optimization algorithm.

Let the AF's present location is , and a random place within the visible range is .The situation,
therefore, becomes an Equation. (3) when we use the maximum use the opposite of the goal
function to transform a maximum dilemma into an appropriate problem, for instance

 (3)

where other terms are the same as above.

Therefore, the AF moves ahead in this direction if the objective criterion, < , is satisfied; if not,
choose a new random position and carry out the objective condition. Step randomly after a
certain number of times, known as the try numeral, if the criteria is not met. A short try quantity in

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

241

the predatory behavior indicates that the AF swims at random and deviates within the realm of
local extreme values. The revised location is shown in Equation (4).

(4)

here the rapports are the similar as overhead.

2. Swarming Behavior.
The two Reynolds rules may be used to characterized swarming behavior:

 Relocating as close to the center of the closest mates as feasible.

 To minimize overpopulation, so that the artificial fish's capacity to swarm could be
essentially realized.

 The fish instinctively congregate in bunches when moving in order to prevent danger and ensure
the colony's survival. Let serve as the focal point of this meeting space, as Equation.(5):

 (5)

where n is the whole fish populace.

Let determine how many of AF's friends live nearby (< Visual). If (/) > δ , The AF steps
to the companion center if there is more food there (greater value of the fitness function) and there
is less crowding; if not, the AF engages in preying behavior. The revised location requirements are
Equation (6).

 (6)

where the rapports are the equivalent as above.

3. Following Behavior.
The following actions can be interpreted as a move in the direction of the best national buddies.
Because of its lack of goal, the random behavior does not specify its direction.

Let be the AF current position, and the neighbourhood friend (<Visual) with the greatest food
consistency If (//) > δ , The AF advances because of its companion's more spacious
surroundings and increased food concentration (higher fitness function score); otherwise, it
behaves like a predator. /e conditions are Equation (7).

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

242

(7)

4. Random Behavior.
In reality, the fish are searching for food or mates in wider areas, which is why they move
aimlessly in the water. Predation does this by default. AF is located at Equation (8):

 (8)

where the terms are the same as above.

B. Performance Metrics

The following performance measures are calculated for computing cloud job scheduling.

1. Execution Cost
The amount that the resource node must pay once all tasks have been completed is known as the
task execution cost. Each resource node has a distinct cost per unit of time. Therefore, the task's
execution cost is Equation (9)

 (9)

In the formula, symbolizes the cost that resource node j must pay each time unit.

2. Load Balancing
The loads of the virtual machines that are operating on a node may be added to determine its load.
examining the decoded sequence, the quantity of tasks that are executing on the node, and the
tasks that are executing on virtual machines. Over this period, the VM load[21]. The
load of VM No. in is V f the load of virtual machines is comparatively
constant during the period. At the same time, there are K VMs operating on node .Co sequent, it
may be said that the load of node in is.Equation (10).

 (10)

The average load across all nodes during this is displayed as follows Equation (11).

 (11)

To accurately depict the magnitude of the loads on various nodes, incorporate variance Equation
(12).

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

243

 (12)

It is clear that load balancing and sensible work scheduling are increasingly important the smaller
the organization. Finding the optimal scheduling that balances load and takes the least amount of
time is the aim of this research.

3. Completion Time
The time needed for the reserve node to complete all of the tasks in the task set once they have all
been assigned is known as the task completion time. Because the resource nodes execute tasks
concurrently, the task completion time refers to the maximum value of the resource node's task
execution time rather than the total duration of execution of all resource nodes, specifically.
Equation (13 and 14).

 (13)

 (14)

The time it takes for virtual node j to do all of its duties is represented by in the formula, and
the overall length of all the jobs that must be completed on virtual node j is represented by

 and the virtual node j's capacity to handle tasks is represented by .

IV. RESULT ANALYSIS AND DISCUSSION
In this paper [25], a ubiquitous and adaptable simulation framework, Cloud Sim, is utilized to
model the AFSA scheduling experiment on the cloud. An HP operating system, along with an
Intel Core i7 CPU and 32 GB of RAM, was used to conduct the trials. It was Java that was utilized.
Using execution cost, load balancing, and completion time as performance metrics, Table III
displays the experimental outcomes of task scheduling using the suggested AFSA algorithm.
Properties of the calculation method are provided in Table II.

TABLE II. PARAMETERS FOR THE AFSA ALGORITHM
Parameter Value

Number of attempts: Attempt 3

Step length: Step 2.5

Field of vision: View 3.5

Crowding factor: δ 2

Threshold: t 5

Number of iterations: iter 100

Population size: Scale 40

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

244

The AFSA algorithm is configured with key parameters to optimize task scheduling, shows in
Table II. It allows three attempts (Attempt) for movement decisions, with a 3.5-degree field of view
and a 2.5-meter step length to direct exploration. A crowding factor (δ) of 2 prevents premature
convergence, while a threshold (t) of 5 ensures fitness-based position acceptance. The algorithm
runs for 100 iterations (iter) with a population size of 40 (Scale), balancing computational efficiency
and solution diversity for improved execution cost, load balancing, and task completion time.

TABLE III. PERFORMANCE OF TASK SIZE FOR AFSA
Task
Size

Execution cost Load balancing Completion Time

50 1.85 0.81 5.06

100 3.78 0.94 9.18

150 6.03 1.16 13.25

200 8.24 1.07 17.09

250 10.87 1.01 21.32

Fig. 3. Comparison of Execution Cost, Completion Time, & Load Balancing in Cloud Task

Scheduling

A situation like using cloud computing, load balancing can reduce implementation cost, and time
needed for completion are compared with respect to task size (see Table III and Image 3). as task
size increases, execution cost and completion time exhibit a linear growth pattern, with execution
cost rising from 1.85 to 10.87 and completion time increasing from 5.06 to 21.32, indicating higher
resource consumption and prolonged processing durations. However, load-balancing values
fluctuate slightly, peaking at 1.16 for a task size of 150 before decreasing to 1.01 at 250, suggesting
that optimal load distribution is affected by increasing workloads. This graphic emphasizes the
trade-offs associated with multi-objective task scheduling and the necessity of appropriate
optimization strategies to reduce execution costs and completion times while preserving load
balancing.

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

245

Fig. 4. Task Size vs Execution Cost

The relationship between the task size and the execution cost in a cloud computing environment is
shown in Figure 4. Through the graph, it can be seen that an increase in execution cost with task
size follows almost a linear trend. For a task size of 50, the execution cost grows from 1.85 to 10.87
for the task size of 250, which means that larger tasks require much more computational resources.
In light of this tendency, it is clear that cloud-based systems require careful scheduling and
allocation of resources to provide optimal performance at minimal cost.

Fig. 5. Task Size vs Load Balancing

In the framework of online computing, Figure 5 illustrates how load balancing varies according on
job size. Initially, load balancing improves from 0.81 for a task size of 50 to the peak of 1.16 for a
task size of 150 as a better task distribution across computing resources. Beyond this point, load
balancing drops slightly to 1.01 at a task size of 250, which may indicate the mass imbalance as
workloads increase. This can be considered as a trend that points out the problem with
maintaining the optimal load distribution with the growing task size, which is the motivation for
developing dynamic scheduling strategies to utilize resources efficiently.

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

246

Fig. 6. Task Size vs Completion Time

In Figure 6, the relationship of task size and completion time in a cloud computing environment.
Completion time increases linearly in an upward trend, from 5.06 for a task size of 50 to 21.32 for a
task size of 250. It means that large tasks need a dramatic increase in processing time, which
suggests that it is very important to have an efficient scheduling mechanism to reduce delays. The
pattern shown shows the effect of the workload size on system performance, and the conclusion is
that they are very significant to use the optimization techniques in command to diminish execution
delays while maintaining the high efficiency.

TABLE IV. COMPARATIVE ANALYSIS OF LOAD BALANCING PERFORMANCE BETWEEN

AFSA AND PSO
Load balancing

Task Size AFSA PSO[22]

50 0.81 -

100 0.94 0.68

150 1.16 0.57

200 1.07 0.56

250 1.01 0.51

The load-balancing performance using the AFSA as well as PSO in terms of task size is presented
in Table IV. When the sizes of task ranges from 50 to 250, and the corresponding AFSA values are
shown through which the algorithm is efficient compared to PSO. In particular, AFSA yields its
best performance (1.16) at a task size of 150, whereas the performance of PSO decreases from 0.51
to 0.49 when the task size increases from 250 to 350. The lack of PSO data for a task size of 50 is
either infeasibility or lack of experimentation in that configuration. The comparison shows that
PSO is not able to handle increasing task sizes as good as AFSA.

A. Discussion
The comparative analysis demonstrates that AFSA is effective in performing the comparative
analysis to minimize execution cost, reduce completion time, improve distributing load, and
optimize cloud computing time management. There needs to be an effective allocation of resources
because the execution cost and completion time grow almost linearly with increasing job sizes. The

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

247

load balancing now fluctuates, peaks at 150, and then decreases slightly, indicating that it is
difficult to maintain the best distribution under increasing workloads. It is found that AFSA is
superior to PSO in load balancing and its task distribution is much better, particularly for large
tasks. This highlights the superiority of AFSA in the cloud scheduling of tasks multi-objective
optimization, which is regarded as a solution to improve system efficiency.

The advantages of AFSA offers the advantages of lower task execution cost, better load balancing,
and smaller completion time, which makes it a robust optimization technique in cloud task
scheduling. On the other hand, the high resource utilization possible with it due to its ability to
dynamically adapt to different workloads improves system efficiency. This study has implications
for coordinating in real time in expansive cloud settings, enabling AFSA to minimize real-time
scheduling cost, reduce operational cost as well and increase service reliability. In the context of
complicated cloud computing, future research might focus on utilizing hybrid AFSA models that
integrate heuristic or deep learning approaches to improve performance, scalability, and flexibility.

V. CONCLUSION AND FUTURE SCOPE
Resource scheduling, which entails allocating accepted tasks to available Virtual Machines, is a
crucial impending difficulty in cloud computing settings. For cloud computing, effective task
scheduling is essential as it improves patterns of resource utilization, lowers execution costs, and
maintains ideal load-balancing behaviors. Using PSO performance analysis, this study created
work scheduling techniques using AFSA. For every recent experiment, AFSA shows better
outcomes than PSO across a range of job sizes. The load-balancing evaluation reached its peak at
1.16 when AFSA processed 150 tasks, while PSO demonstrated decreasing performance metrics,
which resulted in a minimum value of 0.51 at the task size of 250. The AFSA scheduling approach
achieved better execution cost reduction and task completion time compared to PSO due to its
effectiveness in dynamic cloud environments. The results of these results show that AFSA has
greater facility in workload distribution and computational efficiency compared to the existing
techniques. In order to improve scheduling performance, future studies will examine other
schedules that use hybrid metaheuristic algorithms, ML-driven predictive scheduling, and real-
time dynamic workload changes. Moreover, the proposed approach is also extendable to multi-
cloud and fog computation environments for increasing the flexibility and scaling for real-life
application

REFERENCES
1. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging

IT platforms,” Futur. Gener. Comput. Syst., 2009.
2. N. Tziritas, S. U. Khan, C. Z. Xu, and J. Hong, “An optimal fully distributed algorithm to

minimize the resource consumption of cloud applications,” in Proceedings of the International
Conference on Parallel and Distributed Systems - ICPADS, 2012. doi: 10.1109/ICPADS.2012.19.

3. J. Li, Q. Li, S. U. Khan, and N. Ghani, “Community-based cloud for emergency management,”
in Proceedings of 2011 6th International Conference on System of Systems Engineering: SoSE in
Cloud Computing, Smart Grid, and Cyber Security, SoSE 2011, 2011. doi:

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

248

10.1109/SYSOSE.2011.5966573.
4. Godavari Modalavalasa, “The Role of DevOps in Streamlining Software Delivery: Key

Practices for Seamless CI/CD,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 1, no. 12, pp. 258–
267, Jan. 2021, doi: 10.48175/IJARSCT-8978C.

5. M. S. Samarth Shah, “Deep Reinforcement Learning For Scalable Task Scheduling In Serverless
Computing,” Int. Res. J. Mod. Eng. Technol. Sci., vol. 3, no. 12, pp. 1845–1852, 2021, doi: DOI :
https://www.doi.org/10.56726/IRJMETS17782.

6. D. K. P. Kumar, M. T. Sree, C. Krithika, P. Swapna, and N. Bhargavi, “Task Scheduling in
Cloud Computing Using Particle Swarm Optimization Algorithm,” vol. 11, no. 6, pp. 1–5, 2023.

7. V. N. Boddapati et al., “Data migration in the cloud database: A review of vendor solutions
and challenges,” Int. J. Comput. Artif. Intell., vol. 3, no. 2, pp. 96–101, Jul. 2022, doi:
10.33545/27076571.2022.v3.i2a.110.

8. A. Al-Maamari and F. A. Omara, “Task scheduling using PSO algorithm in cloud computing
environments,” Int. J. Grid Distrib. Comput., 2015, doi: 10.14257/ijgdc.2015.8.5.24.

9. R. Tarafdar, “Algorithms on Majority Problem,” Univ. Missouri-Kansas City, 2017.
10. B. Boddu, “Cloud Dba Strategies For Sql And Nosql Data Management For Business-Critical

Applications,”,” Int. J. Core Eng. Manag., vol. 7, no. 1, 2022.
11. M. Shah, I. Researcher, A. Gogineni, and I. Researcher, “Distributed Query Optimization for

Petabyte-Scale Databases,” no. July, pp. 223–231, 2022.
12. S. Srichandan, T. Ashok Kumar, and S. Bibhudatta, “Task scheduling for cloud computing

using multi-objective hybrid bacteria foraging algorithm,” Futur. Comput. Informatics J., 2018,
doi: 10.1016/j.fcij.2018.03.004.

13. B. Kruekaew and W. Kimpan, “Multi-Objective Task Scheduling Optimization for Load
Balancing in Cloud Computing Environment Using Hybrid Artificial Bee Colony Algorithm
with Reinforcement Learning,” IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3149955.

14. Archana and N. Kumar, “Spider Monkey Optimization based Resource Provisioning in Cloud
Computing Environment,” in Proceedings of the 10th International Conference on Signal
Processing and Integrated Networks, SPIN 2023, 2023. doi: 10.1109/SPIN57001.2023.10116420.

15. B. Saemi, A. A. R. Hosseinabadi, A. Khodadadi, S. Mirkamali, and A. Abraham, “Solving Task
Scheduling Problem in Mobile Cloud Computing Using the Hybrid Multi-Objective Harris
Hawks Optimization Algorithm,” IEEE Access, 2023, doi: 10.1109/ACCESS.2023.3329069.

16. R. Mishra and M. Gupta, “Cloud Scheduling Heuristic Approaches for Load Balancing in
Cloud Computing,” in 2023 6th International Conference on Information Systems and
Computer Networks, ISCON 2023, 2023. doi: 10.1109/ISCON57294.2023.10112056.

17. S. Sharma and N. K. Pandey, “Improved Task Scheduling Strategy Using Reinforcement
Learning in Cloud Environment,” in Proceedings - 2022 2nd International Conference on
Innovative Sustainable Computational Technologies, CISCT 2022, 2022. doi:
10.1109/CISCT55310.2022.10046618.

18. H. Mahmoud, M. Thabet, M. H. Khafagy, and F. A. Omara, “Multiobjective Task Scheduling in
Cloud Environment Using Decision Tree Algorithm,” IEEE Access, 2022, doi:
10.1109/ACCESS.2022.3163273.

19. D. Devi and S. G. Winster, “An Efficient Task scheduling and Data security in Heterogeneous
Cloud Computing using Hybrid Meta-Heuristic Algorithm and Block Chain based Key
Aggregate Cryptosystem,” in 3rd International Conference on Power, Energy, Control and

International Journal of Core Engineering & Management

Volume-7, Issue-09, 2024 ISSN No: 2348-9510

249

Transmission Systems, ICPECTS 2022 - Proceedings, 2022. doi:
10.1109/ICPECTS56089.2022.10047356.

20. H. R. Faragardi, M. R. Saleh Sedghpour, S. Fazliahmadi, T. Fahringer, and N. Rasouli, “GRP-
HEFT: A Budget-Constrained Resource Provisioning Scheme for Workflow Scheduling in IaaS
Clouds,” IEEE Trans. Parallel Distrib. Syst., 2020, doi: 10.1109/TPDS.2019.2961098.

21. T. Wang, Z. Liu, Y. Chen, Y. Xu, and X. Dai, “Load balancing task scheduling based on genetic
algorithm in cloud computing,” in Proceedings - 2014 World Ubiquitous Science Congress:
2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing,
DASC 2014, 2014. doi: 10.1109/DASC.2014.35.

22. D. Yu, Z. Xu, and M. Mei, “Multi-objective Task Scheduling Optimization Based on Improved
Bat Algorithm in Cloud Computing Environment,” Int. J. Adv. Comput. Sci. Appl., 2023, doi:
10.14569/IJACSA.2023.01406117.

