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Abstract 

 
Matching of patients to clinical trials is a complex time-sensitive procedure where matching of 
patient characteristics against complex trial protocol eligibility criteria need to be performed. 
Manual matching is prone to error, tedious and inefficient and especially so with large 
amounts of healthcare data. In this research, we suggest a new method based on deep Natural 
Language Processing (NLP) models that aim at automating clinical trials matching. We 
incorporate transformer-based language model similar to BioBERT and ClinicalBERT to find 
and visualize the semantic relationships between patient clinical notes and trial eligibility 
texts. Using unstructured text interpretation by sentence embedding and attention, the 
unstructured text represents the trial-patient pair and the system provides accurate match 
scores of these pairs. Our model was tested again publicly available corpora with marked 
increased precision and recall in comparison with classical rule-based and keyword matching 
systems. These findings indicate that using deep NLP models the rate at which clinical trials 
can be enrolled in and the degree of accuracy can be massively increased and hence allowing 
faster advances in medical research and better patient outcomes. 
 
Keywords— Clinical Trial Matching, Deep Learning, NLP, BioBERT, ClinicalBERT, Patient 
Recruitment, Eligibility Criteria, Transformer Models, Medical Text Mining, Healthcare AI. 
 

 
I. INTRODUCTION 

The progress made by modern medicine can be impossible without clinical trials, as they are 
considered as the scientific foundation of whether new therapeutic measures were safe and 
effective compared to the past. However, one of the most important limitations of the workflow 
of clinical research is the problem of matching patients to the suitable clinical trials. The 
complexity and heterogeneity of the clinical trial protocols frequently raises as a barrier to this 
process since they are comprised of detailed inclusion and exclusion criteria using unstructured 
natural language. Patient records mostly stored through electronic health records (EHR) 
systems, on the other hand, are also unstructured or semi-structured and consist of scribbled 
notes, shorthand and format variability. The semantic and structural gap between these two 
divergent data sources is the core challenge to clinical informatics [1]. 
 
One of the disadvantages of trial matching manually done by the clinical staff is that it is prone 
to errors and is time-consuming. Clinicians might not know about every open trial, and when 
they do, the eligibility requirements can be interpreted using a profound knowledge of the 
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condition the patient has, and a skill of reading long, complicated medical text. Research on 
trials has established that more than 80% of trials face delays attributable to the enrollment 
problem and sometimes up to 50% of trials cannot achieve their enrollment goals [10]. In 
addition, there are also the underserved and rural patients who can frequently be left out of the 
trials because their discovery mechanisms are not automated. Therefore, a smart, expandable 
and efficient system is in great demand to computerize and streamline the patient-trial 
matching procedure. 
 
The problem could be addressed using the recent progress in artificial intelligence (AI), 
specifically, in the Natural Language Processing (NLP) field. In solving these contextual 
semantics-related questions, traditional information retrieval or so called keyword matching 
approaches have limited ability in handling complex medical terms and expressions. In recent 
years, however, with the advent of deep learning-based models of natural language processing, 
notably transformer-based models, including BERT (Bidirectional Encoder Representations with 
Transformers), understanding of texts has changed. Specialist models such as BioBERT, which 
has been trained only on biomedical corpora, and ClinicalBERT, which has been fine-tuned only 
on clinical notes, attain extraordinary results in biomedical sentiment analysis, clinical entity 
recognition, and relation extraction, as well as text classification. 
 
By using these models to match clinical trials, one has the possibility of a superior 
comprehension of the eligibility conditions and the health stories of the patients. Transformer-
based models will have the ability to understand sentences at a sentence level, medical 
abbreviations, negation, and logical ties, all of which are important in correctly establishing a 
match. Consider the case when we have a statement that: No prior history of chemotherapy 
should clearly be interpreted as an exclusion clause which is another thing which the traditional 
systems may not handle very well. Moreover, fine-tuning of such models allows evaluating 
semantic similarity between two segments of text (e.g., a symptom of a patient and an inclusion 
condition of a trial), thereby providing an opportunity to make dynamic and smart decisions 
regarding trial-patient matching [12-14]. 
 
This study aims at developing a fully automated pipeline that allows relating patients to 
suitable clinical trials according to unstructured EHR notes and trial eligibility texts with the 
help of deep NLP models. Our attention is paid to implementing the state-of-the-art pre-trained 
biomedical transformers and building an explainable, scalable, and adaptive matching 
framework to a wide range of clinical contexts. The system suggested in the current study will 
analyze the raw textual form of patient clinical notes and trial eligibility criteria and process 
them through computation of semantic embeddings based on models such as BioBERT and 
ClinicalBERT and similarity-based reasoning to define match scores [5]. 
 
In this paper, we ask how well our approach performs on real-world datasets and measure up 
performance in terms of precision, recall and F1-score. We are also able to contrast our approach 
to other conventional matching systems showing how drastically well the deep NLP integration 
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helped. In addition to performance, we can look at interpretability in terms of attention maps 
and sentence-level scores of contribution, which will provide clinical staff insight into how the 
model makes its decisions. Deep integration of NLP into decision support systems in clinical 
practice is an important milestone towards precision recruitment and the more ambitious 
objective of personalized medicine based on data-driven techniques. 
 
Novelty and Contribution  
What makes this work unique is the integrated usage of specialised deep learning models to 
perform precise matching of clinical trials and patients in an end-to-end automated and precise 
manner previously offered in a manual or very cursory system [3]. Contrary to the case of prior 
approaches, in which data of patients and trial regimens are frequently considered as 
independent information units, our framework locates both pieces of information within a 
common semantic space based on transformer-based embeddings. This enables a sophisticated 
reading and analysis of such medical narratives and represents the sophisticated subsets of 
eligibility reasoning and health trends of patients in a significant manner. 
 
The second fundamental innovation lies in the Siamese transformer architecture together with 
attention-based sentence weighting, through which the system is capable of dynamically 
weighting one of the most relevant parts of text found in the trial and the profile of the patient. 
Such increases not only the accuracy of matches but makes them explainable: clinicians are able 
to see which details in a patient EHR note caused a decision. Such combination of the attention 
heatmaps and contribution scoring is also rather new and provides a solution to find 
interpretability in a field, where both trust and responsibility are highly valued [11]. 
 
Moreover, our approach also considers the domain-adaptive pretraining with both BioBERT 
and ClinicalBERT, which causes the model to be very resistant to medical language differences, 
abbreviations and even misspellings seen in clinical notes. The training and validation of the 
system is performed through the real-life situations of the ClinicalTrials.gov and MIMIC-III 
EHR databases, which guarantees the practical character and the feasibility of the results 
achieved by the system in hospital or, actually, research environments. 
The paper has been able to offer the following, as its contributions: 

 We present a proposal of the DL-based architecture using transformer embeddings-based, 
semantically, rich automatic matching between patient characteristics and clinical trial 
eligibility criteria. 

 A hybrid attention model is introduced which enhances both interpretability and accuracy 
in decision logic to make a match. 

 We perform an extensive test on available datasets on medical data available publicly and 
show better performance than the traditional keyword, or rule-based methods. 

 Our matching interface is fully open, explainable, and capable of integration into the clinical 
workflow that promotes user usability and trust among health professionals. 
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Collectively, the contributions are setting the stage of an innovative use of AI that can speed up 
clinical research, open patient access to trials, and promote equity in the medical innovation 
field. 

 
 

II. RELATED WORKS  
In 2019 Y. Juhn et.al. and H. Liu et al., [2] suggested the area of clinical trial matching is 
significantly changing during the last 10 years, specifically the trend towards the use of 
electronic health records (EHRs) and the development of artificial intelligence solutions. The 
early trial matching systems were mostly rule driven engines which matched specifications on 
trial eligibility criteria against patient data using keywords. Such techniques only work 
satisfactorily in controlled or small-scaled conditions; not in the actual clinical set-ups. The main 
weaknesses of these systems are toughness to language variability, incapability to handle subtle 
semantics of clinical uses and inflexibility among specialties. 
 
The early computational methods of trial matching focused more on format of the data 
structure, with codified measurements like ICD codes, SNOMED concepts, and laboratory 
result cut-offs being utilized. These systems demanded clinical information to be highly 
garnished and clearly outlined to a pre-existing ontology. But a notable percentage of patient 
data as well as the descriptions of their eligibility in the trials are also conveyed in the form of 
free-text. Clinical notes, discharge summaries, and trial protocols are rich in context-dependent 
detail but also rife with abbreviations, negation, or temporal qualifiers, and contextually 
inconsistent phrasing, which are left to the vagaries of rule-based systems to handle. 
 
Later events saw the appearance of Natural Language Processing (NLP) in the field of clinical 
trials in order to indirectly counter the problems of unstructured text. Initiatives about NLP 
during the early years were more concerned with syntactic dissection and named entity 
identification (NER) to retrieve key medical terms in patient records and eligibility declarations. 
Such systems enhanced the quality of retrieval by including clinical ontologies and dictionaries 
and still were mostly dependent on features manually developed and pattern matching rules. 
They were not scalable and cross-domain because they were reliant on domain-specific tuning 
[4]. 
 
With the advent of statistical machine learning models greater dynamism in processing textual 
data became possible. Text fragments were classified using Support Vector Machines (SVMs), 
Conditional Random Fields (CRFs) and it was decided on decision trees in an attempt to meet 
trial criteria. Although such approaches led to superior flexibility and generalizability 
compared to rule sets, still they contained a great amount of feature engineering and had no 
ability to represent deeper semantic relationships between the patient conditions and the 
eligibility requirements. 
 
In 2021 Q. D. Buchlak et.al., N. Esmaili et.al., C. Bennett et.al., and F. Farrokhi et al., [9] 
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proposed the neural networks started promising with handling of unstructured medical text 
with the rise of deep learning. The recurrent neural networks (RNNs), as well as their gated 
versions of LSTM and GRU, were used to obtain these contextual structures in sequential text. 
These models showed better results in information extraction and classification work but failed 
to model long range dependencies and global context, which are essential in medical narratives. 
In addition, RNN-based systems demanded several labeled data and also had the problem of 
training instability and computational complexity. 
 
In 2021 P. Bose et.al., S. Srinivasan et.al., W. C. Sleeman et.al., J. Palta et.al., R. Kapoor et.al., and 
P. Ghosh et al., [15] introduced the transformation of text processing in clinical informatics has 
been disrupted by the appearance of models using transformers. Such fine-tuned pretrained 
language models over biomedical and clinical corpora allowed machines to learn the 
complicated semantics of medical language, with little feature engineering. Such models 
performed well across a variety of downstream tasks such as sentence similarity, entailment 
detection and question answering, all of which are made applicable in deciphering the harmony 
between patient conditions and trial eligibility provisions. 
 
A property of transformer-based models is that it helps process a full document in a coherent 
manner rather than in a piecemeal fashion and this is one of its strengths. It makes it possible to 
better interpret context, co-reference resolution and temporal dependencies. As an example, in 
the set of exclusion criteria that include the fact that "there must not have been prior radiation 
therapy within the past 6 months" relies on the ability of the model to capture understanding of 
the concept of negation as well as timeframes. Biomedical text Transformer models pre-trained 
on biomedical text have shown a significant increase in managing this type of linguistic 
ambiguity over general-purpose language models or conventional classifiers. 
 
Simultaneously, there have been attempts to create mixed systems which involve combining of 
rule based logic together with neural embedding representations. These systems aim at 
maintaining the accuracy of deterministic matching with the inclusion of the semantic fluidity 
of deep learning. This is especially applicable in the medical application context where 
explainability and compliance are a necessity. Also, transformer models have an attention 
mechanism which has allowed to introduce some interpretability in the predictions made by the 
model in terms of highlighting the aspects of the input text, which where most influential in 
finding a match. 
 
Sentence embeddings have attained success in comparing the eligibility requirements with the 
patient profiles as well. Embeddings help to extract semantics and represent the clinical 
statements as a fixed-dimensional space that allows similarity to be compared directly by 
measuring the cosine distance. Siamese networks in which paired documents are processed 
with a common encoder revealed good performance in deciding whether a patient record meets 
the eligibility criteria of a clinical trial. Moreover, such architectures can be optimized to 
perform a binary classification, a scoring or a ranking task according to the intended usage. 
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Irrespective of these developments, the full-fledge of automated trial matching systems has a 
number of obstacles. Eligibility rules are characterised by nested logics, multiple exception 
handlers and imprecise temporal expressions which cannot be comprehended even by the most 
sophisticated models. Putting the unstructured and structured data sources into the same 
pipeline also remains an area of active exploration. Other issues that have to be overcome are 
privacy concerns, domain adaptation, and the lack of large, labeled data to train supervised 
models. 
 
Altogether, rule-based system to deep learning-empowered NLP model is a paradigm 
transformation in the way clinical trial matching is pursued. Although the previous approaches 
established the basis of the structured extraction and retrieval, the contemporary transformers-
based models provide the semantic richness and versatility required to achieve a robust and 
scalable solution. These changing techniques do not only help enhance the patient enrollment 
but also in the fairest, efficient, and precise clinical research practices in the digital world. 
 
 
III. PROPOSED METHODOLOGY  
The proposed system for automated clinical trial matching leverages transformer-based NLP 
models and semantic similarity scoring. The architecture consists of multiple modules including 
data preprocessing, embedding generation, pairwise similarity computation, and classification 
logic. The overall architecture is illustrated in Figure 1: End-to-End Framework for Clinical Trial 
Matching. 

 
FIGURE 1: END-TO-END FRAMEWORK FOR CLINICAL TRIAL MATCHING 
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Let D_p and D_t be the patient note and trial eligibility document respectively. Both are treated 
as sequences of unstructured sentences. Tokenization of these documents is performed using 
WordPiece: 

 

Each sentence in D is encoded using a pretrained transformer model to produce contextualized 
embeddings: 

 

where s is a sentence, and BERT_"[CLS] "  returns the [CLS] embedding vector representing the 
entire sentence. 

Given two sentences s_p∈D_p and s_t∈D_t, the similarity between them is computed using 
cosine similarity: 

 

To improve pairwise matching, we adopt a Siamese network structure where both  and  are 

passed through shared encoders and their embeddings compared [6]. 

Let the final similarity vector  for a document pair be defined as the aggregation of all pairwise 
sentence similarities: 

 

Here α_ij represents the attention weight between the i-th patient sentence and j-th trial clause, 
where: 

 

This weight matrix acts as an attention map, emphasizing important matching pairs [8]. 

The similarity score vector is passed to a classification head. The output probability of a match 
is calculated using softmax. 
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Where z_0 and z_1 are the logits for "no match" and "match", derived as: 

 

The classification loss is computed using cross-entropy: 

 

where  is the true label and  is the predicted probability. 

Additionally, we train the model to preserve semantic distance. A margin ranking loss is used 
to ensure that matched pairs are closer than non-matched pairs: 

 

where δ is a margin constant. 

To integrate structured features like lab values and demographics, we concatenate them with 
the sentence embeddings: 

 

This composite vector F ⃗ is then passed to a multilayer perceptron (MLP): 

 

The final decision threshold θ determines if a patient matches a trial: 

 

 

IV. RESULT & DISCUSSIONS 
The effectiveness of the automated clinical trial matching system created on the basis of deep 
NLP models was divided into a benchmark dataset featuring de-identified patient records and a 
corpus of trial eligibility texts collected at ClinicalTrials.gov. The capability of the system to 
identify the eligible and non-eligible patient-trial pairs was tested. The findings indicated that 
there was a major improvement as compared to conventional approaches. As Figure 2 reveals, 
which plots precision-recall curves of the model with different architecture, the BioBERT-based 
one outperformed others with the area under the curve (AUC) of 0.91, and only then followed 
by ClinicalBERT with the AUC = 0.89. The classic TF-IDF based matching system posed a great 
distance behind in terms of contextual and semantic similarity. As seen in these curves, the deep 
contextual embeddings do point to an improved way of handling clinical intent, since the 
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transformer models have a more appropriate level of representation when it comes to complex 
trial conditions like to temporal constraints, negations, and compound eligibility rules. 

 

FIGURE 2: PRECISION-RECALL CURVE DATA 

The test also determined the precision of every model by standard measures. As shown in table 
1: Performance Metrics of Clinical Trial Matching Models, BioBERT model attained a precision 
of 0.88, a recall of 0.86 and an F1-score of 0.87. Opted values were much bigger in comparison 
with the TF-IDF baseline with precision, recall, and F1-score of 0.65, 0.61, and 0.63 accordingly. 
The table of comparison reveals it too, as ClinicalBERT was a bit outperformed by BioBERT, still 
closely following a high lead with an F1-score of 0.85. The best overall outcome in terms of 
accuracy and interpretability was demonstrated by the hybrid model that combined attention-
based rule filters with transformer embeddings and showed the worth of introducing domain 
logic into the neural design. 
 

TABLE 1: PERFORMANCE METRICS FOR CLINICAL TRIAL MATCHING MODELS 

Model Precision Recall F1-Score 

TF-IDF 0.65 0.61 0.63 

ClinicalBERT 0.86 0.83 0.85 

BioBERT 0.88 0.86 0.87 

Hybrid (Rule + DL) 0.90 0.85 0.87 

 

In order to look at the matching behavior on the sentence level, Figure 3 shows an attention 
heatmap overlay of a patient note and a clinical trial eligibility description. The dark portions 
demonstrate the words or phrases that received the greatest attention weights and therefore 
made more contributions to the ending matching score. The phrases like Stage II diabetes, no 
prior chemotherapy and over 50 years of age received much attention focus, which 
demonstrated the ability of the model to focus on clinically relevant information rather than 
what is irrelevant or redundant. This conscience-based explainability plays an essential role in 
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healthcare AI models, where clinicians need an easy way to understand and trust the involved 
operations. 

 

FIGURE 3: SENTENCE PAIR ATTENTION MATRIX 

Additional research was done to determine the legitimacy of the model in medical 
specialization. Indeed, as Figure 4 illustrates by comparing the accuracy scores of the model on 
oncology vs. cardiology vs. endocrinology trials, the BioBERT model has shown to be rather 
consistent in oncology and endocrinology (above 88%), but decreased a bit in cardiology 
(approximately by 84 percent), probably because the trial criteria are more ambiguous and the 
clinical language used in the records is less uniform there. This implies that additional fine-
tuning on the domain level or data enlargement might be required to meet the importance in 
more fragmented or abstract domains. 

 

FIGURE 4: ACCURACY PER SPECIALTY 

A second comparative analysis was done to understand the practical impact of epic system 
based systems when compared with the old-fashioned matching systems on a wide range of 
dataset sizes. Table 2: Execution Time and Match Accuracy vs. Dataset Size shows that deep 
NLP models consistently performed well on accuracy even as the size of the dataset is 
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increased, but keyword-based systems exhibited very sharp drops on time and on accuracy. As 
an illustration, BioBERT had an F1-score of 0.86 and took less than 20 seconds to process 10,000 
patient-trial combinations whereas the conventional approach went to 0.57 and over 120 
seconds as it had to perform a linear search by matching strings. 

 

TABLE 2: EXECUTION TIME AND MATCH ACCURACY VS. DATASET SIZE 

Dataset Size TF-IDF F1 TF-IDF Time 
(s) 

BioBERT F1 BioBERT Time 
(s) 

1,000 0.66 10 0.87 4 

5,000 0.60 58 0.86 10 

10,000 0.57 120 0.86 19 

 
The assessment was based on the user level response of clinicians that analyzed the 
explanations and outputs of the system. Numerous people also stated that the level of 
highlights allowed at the sentence level by attention maps contributed to the comprehension of 
reasons why a specific match was accepted or not. This is especially evident in the application 
of Figure 2 where colored texts are reflective of clinical decision-making logic that doctors 
would otherwise go through. The clinical awareness of the model is proven by its ability to rule 
out a patient per such a criterion as “no prior radiation” or include it according to the criterion 
as “HbA1c > 7%” [7]. 
 
To conclude, we find a lot of gains in accuracy, speed, and trust through the insertion of 
transformer-based deep NLP into clinical trial matching. The demonstration of comparative 
performance in Table 1 and Table 2 and visualization in Figure 2, Figure 3, and Figure 4 shows 
that these models are better as far as matching capability and the operation speed are concerned 
compared to the traditional systems. With the maturity of these technologies, they can be 
further integrated into the EHR systems to provide intelligent, real-time and automated 
realignment of patients to trials. 

 
 

V. CONCLUSION  
Matched clinical trials J-PACM automatic matching with deep NLP models is an important 
innovation of contemporary AI technology in healthcare. Our analysis shows that transformers-
based architectures such as BioBERT and ClinicalBERT are effective in capturing and comparing 
complex clinical semantics in doing accurate trial eligibility assessments. Our system can be 
used to speed up the trail enrollment process and optimize the recruitment of patients due to its 
strong performance in standard benchmarks and the potential of having good generalizability. 
Future extensions will include the incorporation of real-time EHR pipelines, support of complex 
time-based requirements, and the extension into multilingual clinical text in order to bring the 
system to a universal usable scale. The popularity of these technologies is an indication that we 
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are going in the right direction towards combining AI and precision medicine. 
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