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Abstract 

 
High-Performance Computing (HPC) has emerged as a critical component of modern scientific 
and industrial innovation, permitting the speedy resolution of more sophisticated, data-heavy 
problems. Within the financial sector, where accuracy and computation speed are critical, HPC 
techniques have enabled financial institutions to run large-scale simulations, risk analytics, 
and algorithmic trading. C++ continues to be the most widely-used language in financial 
software engineering because of its efficiency, object-oriented approach, and hardware controls. 
Graphics Processing Units (GPUs) using CUDA offer unmatched parallel processing power to 
speed up numerical workloads. The integration of C++ and CUDA automatically raises 
fundamental challenges associated with programming paradigms, memory management, and 
synchronization models. The aim of this paper is to review current implementations of C++ and 
CUDA integration in high-performance financial computing with an emphasis on automatic 
offloading mechanisms that allow programs to benefit from GPU acceleration without 
extensive manual offloading. Summarize compiler-assisted approaches, template-based 
programming that retains the flexibility of C++ with a performance increase, and framework-
based approaches. Monte Carlo simulations, option pricing, and portfolio optimization are 
among the practical applications of automatic C++–CUDA integration, and the accompanying 
talks discuss the pros and cons of existing systems.  Scalability, memory management, and 
domain knowledge challenges are addressed in the study, which also discusses autonomous 
GPU offloading in financial HPC systems. 
 
Keywords: High-Performance Computing, CUDA, C++, automatic offloading, financial 
computing, hybrid programming, Monte Carlo simulation. 
 

 
I. INTRODUCTION  

High-Performance Computing (HPC) is an attractive and rapidly evolving field within 
computer science. By leveraging parallelism and distributed resources, HPC enables the 
solution of complex problems that are beyond the capabilities of conventional systems [1]. It has 
found applications across diverse domains such as molecular biology, genetic engineering, 
space exploration, cosmology, financial modeling, artificial intelligence, and cryptography. 
Broadly, HPC can be classified into three paradigms: Cluster Computing, Grid Computing, and 
Cloud Computing. Cluster computing refers to a system in which two or more autonomous 
nodes are interconnected to collaboratively solve computationally intensive problems beyond 
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the capabilities of traditional computing systems [2]. By leveraging parallelism and distributed 
resources, HPC accelerates computations across domains such as molecular biology, 
astrophysics, artificial intelligence, cryptography, and financial modeling. Among these, 
financial computing stands out as a domain where computational efficiency is not only a 
performance metric but also a direct determinant of economic success [3][4]. The ability to 
perform rapid, large-scale computations can influence investment decisions, risk assessments, 
and market predictions, tasks that require both speed and accuracy. The economic and social 
structure of contemporary civilization is significantly influenced by financial markets [5]. In 
recent decades, various statistical and soft computing mechanisms have been proposed to assist 
investors and analysts in predicting trends and optimizing decisions across different financial 
market segments [6]. However, the growing complexity and scale of financial datasets demand 
more powerful computing architectures beyond conventional CPUs [7][8]. 
 
C++ has long been recognized as the backbone of high-performance financial software 
development. Its combination of execution speed, low-level memory control, and strong type 
safety makes it particularly well-suited for computationally intensive financial applications [9]. 
In domains such as quantitative finance, risk analytics, and algorithmic trading, even 
millisecond-level delays can result in substantial financial losses. C++ provides developers with 
the flexibility to optimize performance at both the hardware and software levels, making it a 
preferred choice for latency-sensitive systems. Financial institutions and fintech firms rely 
heavily on C++ to implement pricing models, Monte Carlo simulations, and portfolio 
optimization algorithms. The language’s support for object-oriented and template-based 
programming allows the development of scalable, reusable components that support complex 
mathematical frameworks [10][11]. To further accelerate such computational workloads, 
developers increasingly turn to Graphics Processing Units (GPUs), which excel at parallel data 
processing. NVIDIA first unveiled the Tesla microarchitecture in 2007 as part of their Compute 
Unified Device Architecture (CUDA) parallel computing platform and programming 
methodology. Since then, CUDA has evolved across multiple generations, including Fermi, 
Kepler, Maxwell, and Pascal architectures [12]. CUDA enables general-purpose GPU 
programming, allowing developers to exploit thousands of lightweight threads for numerical 
computation. Unlike OpenGL, which was primarily designed for graphics rendering, CUDA 
offers a dedicated API and programming environment focused on general-purpose 
computation on GPUs (GPGPU) [13]. 
 
While CUDA provides immense computational power, integrating it seamlessly with existing 
C++ financial applications remains a significant challenge. Traditional C++ programs are 
primarily designed for CPU-based sequential execution, whereas CUDA requires developers to 
explicitly define kernels, memory transfers, and device synchronization. This fundamental 
difference in programming models complicates the process of porting legacy C++ code to GPU 
architectures. Moreover, manual GPU programming demands specialized expertise in parallel 
computing and low-level memory management, which increases development complexity and 
reduces maintainability. Consequently, despite the clear performance benefits of CUDA, many 
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financial institutions hesitate to fully adopt GPU acceleration due to the high cost and time 
involved in rewriting large C++ codebases. Hence, an efficient bridge between C++ and CUDA 
is essential to exploit GPU performance while retaining the productivity and stability of C++ 
environments [14]. To overcome these integration challenges, researchers have developed 
automatic offloading techniques, which aim to identify compute-intensive sections of C++ code 
and transfer them automatically to GPUs for parallel execution. These methods eliminate the 
need for manual CUDA programming by relying on compiler analysis, runtime profiling, and 
code transformation tools [15]. Frameworks such as Open ACC, OpenMP 4.5, SYCL, and 
Kokkos provide abstraction layers that allow developers to maintain standard C++ syntax while 
benefiting from GPU acceleration [16]. In the context of financial computing, automatic 
offloading holds significant promise for accelerating simulations, pricing models, and data 
analytics without extensive code refactoring. However, the effectiveness of these systems varies 
in terms of performance gain, portability, and ease of adoption. Therefore, a comprehensive 
survey is necessary to examine existing techniques, evaluate their applicability to financial 
workloads, and identify open challenges in bridging C++ and CUDA for high-performance 
financial computing. 
 
A. Structure of the Paper 
The paper structure is as follows: Section II reviews automatic offloading frameworks. Section 
III covers C++–CUDA integration techniques. Section IV discusses GPU acceleration 
applications in finance. Section V outlines challenges and future directions. Section VI reviews 
related literature, and Section VII concludes with future work. 

 
 

II. OVERVIEW OF AUTOMATIC OFFLOADING FRAMEWORKS 
In advanced scientific research, the massively parallel architecture of GPU accelerators is being 
used to speed up computing workloads. The vast parallelism and energy efficiency of GPU-
based clusters have increased the desire of academics and developers to migrate their 
applications to these. 
 
A. Tacit Computing Outline 
The technique known as "tacit computing" finds and arranges the appropriate network, cloud, 
and device layer resources for users at that time to deliver services tailored to each individual 
(Figure 1). The goal of Tacit Computing, despite its three-layer structure, is to handle changes in 
real time by processing as much as possible at the device layer, which is closest to the user site. 
Through device-layer processing, implicit computing can lower network traffic and stop critical 
data breaches.  In order to find and use the right devices for users, live data discovery and 
device virtualization technologies are essential components of tacit computing. 
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Fig. 1. Outline of Tacit Computing 

 
Technology for live data discovery finds devices that provide consumers the info they need. 
Consider a scenario where a fixed-point camera is used to record a person and provides 
instruction or warning notifications. The individual in question is only on camera for a brief 
moment and is only interested in the portion of the video that they are featured in. Information 
that is constantly changing is referred to as live data in this context. Live data discovery 
technology assigns analytical jobs to lower levels so that users may locate the vital real-time 
information without waiting for it to reach the cloud tier. 
 
Consider a scenario where a user wishes to view videos featuring their buddy who is 
competing in a marathon competition. Here, the friend's bib number is entered by the user as a 
search key in Tacit Computing. 
 
B. Improvement by offloading specific processing for Tacit Computing applications 
In this approach, Tacit Computing helps consumers find and use the right devices, which is a 
concept of Open IoT. Nevertheless, Tacit Computing disregards cost and performance when it 
employs devices dynamically. If the scenario in instead of tracking a marathon runner, the 
preceding part focused on police monitoring of terrorists or town cameras looking for elderly 
individuals who have disappeared. As a result, continuous and affordable image analysis 
services of camera footage are required [17]. 
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Fig. 2. Steps of automatic offloading 

 
The offload region is extracted from the user application source codes by Tacit Computing, 
which then generates the intermediate language, deploys the binary file created from the 
intermediate language on the verification machine, runs it, and confirms the offload effect. The 
binary file is sent to the production environment and made available as a production service 
after Tacit Computing restarts the verification and identifies the proper offload zone. Here, 
Figure 2 is used to illustrate the unloading procedures. 
 
Tacit Computing uses the automated offloading technique in 1-1 to allocate user applications, 
like as picture processing. To find processing structures like loop statements and library calls 
like FFT (Fast Fourier Transformation), the automated offloading feature in apps 1-2 examines 
the source code. In 1-3, the automated offloading feature finds and extracts the intermediate 
language for off loadable logics, such as loop statements and FFTs, on a GPU or FPGA. In 1-4, 
intermediate files are produced. The extraction of intermediate language happens more than 
once, as explained in the next subsection. To determine the ideal offloading location, recursive 
extraction and execution are utilized. 
 
The intermediate language binary file is sent to a GPU-FPGA verification machine in 2-1 by the 
automated offloading mechanism. Executing deployed files and measuring offloading 
performance in 2-2. In order to better unload the region, the automated offloading function goes 
back to steps 1-3 and uses the results of performance measurements to derive another pattern. 
In phases two and three, it decides on the final offloading area layout and forwards the user's 
binary files to production. Performance test cases are extracted from the test case database (DB) 
and run by Jenkins or other tools in stages 2-4 to demonstrate user performance following 
binary file deployment. Users can choose whether to pay for the IoT service in steps two 
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through five after receiving pricing, performance, and other information depending on the 
outcomes of performance tests. 
 
C. Proposal of automatic GPU offloading technology using Genetic Algorithm 
It is commonly stated that while GPUs can increase throughput through parallel processing, 
they cannot ensure latency. Although there are many IoT applications, common examples 
include machine learning (ML) processing for large-scale sensor data analysis with various loop 
processes and image processing for camera movies. Consequently, try to increase application 
throughput by automatically shifting loop activities to the GPU [18]. 

 
Fig. 3. Image of GPU offloading area search by GA 

 
However, parallel processing in an appropriate location is necessary for optimum performance, 
as stated in Section 2. Unless there is a large quantity of data or loops, performance may not 
increase when memory data is moved between the CPU and GPU. Parallel processing may not 
always provide the best performance for certain loop statement combinations, as it depends on 
memory process status and data transfer timing. It might not be the fastest to use a three-
parallelization arrangement when parallel processing can process loop statements #1, #5, and 
#10 more quickly than CPU processing in loop statements 10. To find a suitable parallel 
processing region, optimize loop statement parallelization or sequentialization through round 
robin trials. 
 
A picture of GA activities is displayed in Figure 3. GA models biological evolution using 
combinatorial optimization. The GA flow phases include Initialization, Evaluation, Selection, 
Crossover, Mutation, and Complete Judgment. Use Simple GA in the recommended manner. 
Roulette selection is used to choose genes, which are then flipped from 1 to 0 or vice versa at a 
specific rate during mutation. At one point in time, genes move from one individual to another. 
This is known as simple GA, which is a simpler variant of GA [16]. 
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III. HIGH-PERFORMANCE COMPUTING WITH C++ AND CUDA 
High-performance computing in finance often requires both computational efficiency and 
programmer productivity. C++ is widely used in quantitative finance due to its efficiency, 
object-oriented features, and rich ecosystem for numerical computing. CUDA, NVIDIA’s 
parallel computing platform, enables programmers to utilize GPUs' enormous computing 
capabilities. Bridging C++ and CUDA enables financial applications—such as Monte Carlo 
simulations, option pricing, and risk analysis—to execute computationally intensive tasks on 
GPUs, achieving significant speedups compared to CPU-only implementations [19]. 
 
Automatic or semi-automatic integration of C++ and CUDA reduces the manual effort required 
to manage device memory, write kernel functions, and handle host-device synchronization, 
which are traditionally complex and error-prone. Surveying existing techniques and 
frameworks is essential to understand how C++ constructs can be mapped effectively to GPU 
architectures for financial computing workloads.  
 
A. C++–CUDA Integration Techniques 
Integrating C++ with CUDA can be approached at several levels: 

 CUDA Kernels and Device Functions: Traditional integration involves writing CUDA 
kernels directly in .cu files and invoking them from C++ host code. The developer is 
responsible for overseeing configurations for memory allocation, host-to-device data 
transmission, and kernel launch. 

 Wrapper Libraries: Libraries like Thrust and cuBLAS provide high-level abstractions for 
vector and matrix operations, allowing C++ developers to leverage GPU acceleration 
without writing low-level CUDA code. 

 Template-Based Approaches: Modern C++ features, such as template metaprogramming, 
enable generic programming patterns that can be compiled into efficient CUDA kernels. 
This allows automatic generation of GPU code from C++ abstractions. 

 Compiler Directives and Pragmas: OpenMP 4.5+, Open ACC, and similar frameworks 
allow developers to annotate C++ loops and functions for GPU offloading, where the 
compiler handles the translation and scheduling of code on GPU devices. 

 
By combining these techniques, developers can balance performance, portability, and 
maintainability in financial HPC applications. 
 
B. Expression Templates and Meta-Programming 
Expression templates are a powerful C++ technique that enables lazy evaluation of 
mathematical expressions. Instead of performing intermediate computations immediately, 
expression templates build a representation of the computation at compile time. This 
representation can then be translated into optimized CUDA kernels, minimizing temporary 
storage and maximizing parallelism. 
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 Example in Financial Computing: Consider a portfolio risk calculation involving multiple 
matrix and vector operations. Using expression templates, the entire computation tree can 
be captured as a single expression and offloaded to the GPU as a single kernel launch, 
reducing overhead and memory operations. 

 Benefits: 
o Improves maintainability by keeping financial formulas expressed in readable C++ 

syntax. 
o Enables automatic generation of efficient CUDA kernels from high-level C++ code. 
o Reduces runtime overhead and temporary memory allocations. 

 Challenges: 
o Debugging compile-time errors can be difficult due to heavy template usage. 
o Complexity in designing template hierarchies. 

 
C. Code Transformation and Kernel Generation 
Code transformation techniques automatically convert C++ constructs into GPU-executable 
CUDA code, reducing the need for manual kernel development. Key approaches include: 

 Static Analysis and Compiler-Assisted Transformation: Compilers analyze loops, 
dependencies, and data structures in C++ code to determine parallelizable regions, 
generating corresponding CUDA kernels. 

 Genetic Algorithm or AI-Assisted Offloading: Some advanced frameworks evaluate 
multiple code partitioning strategies to determine optimal offloading regions automatically, 
balancing GPU utilization and minimizing data transfer overhead. 

 Automatic Kernel Generation Libraries: Libraries like TLoops and other template-based 
frameworks allow developers to write high-level tensor or matrix operations in C++, which 
are then transformed into optimized CUDA kernels at compile time. 

 Benefits in Financial HPC: 
o Enhanced portability across different GPU architectures. 
o Improved kernel performance through automated optimization. 
o Reduced development time for GPU-accelerated financial algorithms. 

 Limitations: 
o Performance depends heavily on compiler heuristics and GPU hardware 

characteristics. 
o Transformation frameworks may not capture all domain-specific optimizations. 

 
Table I summarizes the fundamental differences between C++ and CUDA, highlighting their 
distinct purposes, execution models, memory architectures, and performance focuses. While 
C++ is a versatile, general-purpose programming language designed for a wide range of 
applications, CUDA is a GPU-focused parallel computing platform that extends C++ to 
leverage massive parallelism for high-performance workloads. This comparison underscores 
how C++ and CUDA complement each other in high-performance financial computing. 
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TABLE I.  DIFFERENCE BETWEEN C++ AND CUDA 

  
Aspect C++ CUDA 

Purpose General-purpose programming 
language for building software across 
domains. 

A programming paradigm and parallel computing 
platform created especially for NVIDIA GPUs. 

Execution Runs on CPU (serial or limited 
parallelism using threads). 

Runs on GPU (massively parallel execution of 
thousands of threads). 

Parallelism 
Model 

Relies on CPU multi-threading and 
parallel libraries (e.g., OpenMP, TBB) for 
concurrency. 

Uses SIMT (Single Instruction Multiple Thread) 
model to achieve massive parallelism. 

Programming 
Model 

Imperative, object-oriented, and generic 
programming with templates. 

Extension of C++ with GPU-specific constructs 
such as kernels, threads, and memory management 
directives. 

Memory 
Architecture 

Uses CPU memory hierarchy (registers, 
caches, RAM). 

Has distinct memory spaces — global, shared, 
constant, and registers — requiring explicit 
management. 

Compilation Compiled by a standard C++ compiler 
(e.g., g++, clang). 

Requires CUDA compiler (nvcc) to compile device 
(.cu) code alongside C++ host code. 

Code 
Structure 

Includes functions, classes, templates, 
and STL constructs. 

Includes kernels, device functions, thread 
hierarchies, and host–device synchronization. 

Development 
Scope 

Broad applications (desktop, embedded, 
scientific, finance, system software). 

Specialized for GPU-accelerated computation in 
domains like HPC, AI, scientific computing, and 
finance. 

Performance 
Focus 

Optimized for single-thread 
performance and algorithmic efficiency. 

Optimized for throughput and massive parallelism 
in compute-intensive workloads. 

Ease of Use Mature language with extensive 
libraries and toolchains. 

More complex; requires explicit memory 
management and understanding of GPU 
architecture. 

 
 
IV. APPLICATIONS OF GPU ACCELERATION IN FINANCIAL COMPUTING 
Integration of C++ with CUDA is key to high-performance financial computing.  By combining 
C++'s efficiency and flexibility with GPUs' huge parallel processing capabilities via CUDA, 
developers may expedite Monte Carlo simulations, option pricing, and portfolio optimization. 
Automatic offloading simplifies GPU-specific code writing, while bridging these two 
technologies produces high-performance, maintainable code.  This section discusses processes, 
frameworks, and strategies for seamlessly connecting C++ applications to CUDA for optimized 
financial computations [20]. 
 
A. Monte Carlo simulations in statistical physics 
Most traditional integration strategies fail for high-dimensional integrals, motivating Monte 
Carlo integration. Additionally, typical physical systems' phase spaces have a significant 
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number of dimensions.  In three space dimensions, the phase space dimension for N classical 
particles is d = 6N since a particle can be described using just three coordinates and three 
momentum components. Figure 4 illustrates the Binder ratio's finite-size scaling and the 
system's corresponding phase transition behaviour. 

 
Fig. 4. Finite-Size Scaling of the Binder Ratio for the 2D Ising Model 

 
Left panel: The two-dimensional Ising model with nearest-neighbor contacts and the 
relationship between temperature and its binder ratio. A transition is shown by data that almost 
crosses at a single point (the dashed line is the exact known Tc for the two-dimensional Ising 
model).  
 
Right panel: Using the known Tc = 2.269. and ν = 1, the data in the left panel is scaled to a finite 
size. The Binder ratio data is shown against the scaling variable L 1/ν [T − Tc]. A universal 
curve that shows data for various system sizes indicates that the parameters being utilized are 
appropriate. 
 
It is a perfect match for the Monte Carlo integration with significance sampling. States are now 
chosen based on the Boltzmann distribution, where P(s) represents the Boltzmann distribution. 
This is achieved when the factors cancel out.  There is now a challenge in identifying an 
algorithm that permits a Boltzmann distribution sampling.  It is referred to as the Metropolis 
algorithm [21]. 
B. Optimal trading strategy 
The IT uses mid-price innovations to keep her informed before modifying her approach by 
determining how to use limit orders and the market to trade in and out of positions between 
now and T < T. Market orders guarantee speedy execution but are more expensive since the 
trader must pay the spread in addition to liquidity taking expenses. To fill her limit order, 
however, the trader must wait for an incoming market order.  Limit orders, however, do not 
incur costs (they may be eligible for refunds in some markets), but execution is not guaranteed 
[22]. 
 
The IT only publishes passive orders at the touch (best bid or ask), where ` ± t = {' 1± t, . . . , `k± 
t} ∈ {0, 1} k indicates that she has decided to post a sell (+) or buy (−) limit order for one unit of 
asset at time t, with ` i± t = 0 indicating that there is currently no post. Additionally, suppose 
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that the IT's limit order is filled with probability p = {p1, . . . , pk} each time an incoming market 
order is received. Additionally, the number of market orders transmitted by the IT up to time t 
is counted by m± t = {m1± t..., mk± t} ∈ Z k +. 

 A uniformed trader who believes that uniformed traders (UTs) lack the ability to generate a 
prior or learn from price innovations, hence the midprice dynamics are dictated by an 
arithmetic Brownian motion. In this case, the UT’s strategy becomes that of a liquidity-
supplying investor, akin to the models of market makers described in the corpus of current 
research.  

 The other trader, known as the uninformed learner (UL), has a uniformed background but 
has the capacity to learn from market dynamics. In contrast to the UT's, his prior does not 
necessarily have an independent normal with mean zero and variance σ 2 i T, even though it 
is symmetric about the current midprice. Consequently, the UL can get insight from the 
midprice trends. 

 
C. Impact of high-performance computing in finance 
The advent of the above-mentioned mathematical models and the employment of cutting-edge 
workstations to solve them have led to significant advancements, particularly in risk pricing. 
The computing power of workstations would be depleted by some of the more intricate risk 
pricing models, forcing analysts to employ workstation clusters.  Additionally, before a pricing 
model is implemented in practice on a group of workstations, it may occasionally be prototyped 
and tested using highly performant or massively parallel computers [23]. 
 
The majority of models for integrated risk management, especially those that use stochastic 
programming, depend on high-performance computers to solve their problems. It has even 
been extensively researched in the development of special-purpose parallel algorithms. Finally, 
the fact that computer-aided financial product creation entirely relies on high-performance 
parallel computations is only a hint that this field of study is still in its early experimental phase. 
Expect to see computer-aided design used on a broad range of platforms as it becomes 
increasingly common, encompassing workstation clusters, high-end workstations, and maybe 
systems with large parallel processing. 
 
 

V. ROADMAP FOR OVERCOMING CHALLENGES IN C++ AND CUDA-BASED 
FINANCIAL HPC 

This section presents a comprehensive roadmap for addressing the critical challenges in 
integrating C++ and CUDA for automatic offloading in high-performance financial computing. 
Table II summarizes each major challenge, its impact on financial HPC, current solutions and 
their limitations, and proposes future directions and novel trends to overcome these issues. The 
table also highlights the potential impact of these advancements, emphasizing how emerging 
techniques such as AI-assisted compilers, domain-specific frameworks, and adaptive runtime 
systems can enhance performance, portability, scalability, and efficiency in GPU-accelerated 
financial applications. 
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TABLE II. CHALLENGES, CURRENT SOLUTIONS, FUTURE DIRECTIONS, NOVEL TRENDS, 

AND IMPACTS IN C++ AND CUDA AUTOMATIC OFFLOADING 
Challenge Impact on 

Financial 
HPC 

Current 
Solutions 

Limitations 
of Current 
Solutions 

Future Direction Novel 
Trends 

Potential 
Impact 

Compiler 
and 
Portability 
Issues 

Inconsistent 
builds, 
reduced 
portability 
across 
hardware 
and software 
environment
s. 

CUDA 
updates, 
compiler 
version 
control, 
cross-
platform 
framework
s. 

Manual 
tuning still 
needed; 
poor 
automation; 
limited 
cross-
platform 
support. 

Develop AI-
assisted 
compilers with 
adaptive code 
transformation. 

Cross-
platform 
offloading 
frameworks 
supporting 
multiple 
GPUs and 
heterogeneo
us 
hardware. 

Increased 
portability, 
reduced 
developme
nt time, 
and wider 
deployme
nt across 
systems. 

Memory 
Manageme
nt and 
Data 
Transfer 

Latency and 
bandwidth 
bottlenecks, 
reduced GPU 
throughput. 

Unified 
Memory, 
pinned 
memory, 
asynchrono
us data 
transfer 
APIs. 

Still 
requires 
manual 
tuning; 
overhead in 
large 
datasets. 

Improved 
Unified Memory 
and 
asynchronous 
data movement 
models. 

Hardware–
software co-
design for 
dynamic 
memory 
managemen
t. 

Reduced 
latency, 
improved 
throughpu
t, and 
efficient 
memory 
utilization. 

Domain-
Specific 
Optimizati
on 

Suboptimal 
performance 
for financial 
workloads 
due to 
generic 
frameworks. 

Manual 
kernel 
tuning, 
domain-
specific 
libraries. 

Time-
consuming; 
lacks 
automation; 
non-
scalable for 
diverse 
workloads. 

Create financial-
domain-specific 
offloading 
frameworks. 

Incorporatio
n of domain 
heuristics 
into GPU 
kernel 
generation. 

Improved 
accuracy 
and 
performan
ce for 
domain-
specific 
algorithms 
such as 
option 
pricing 
and risk 
modeling. 

Debugging 
and 
Profiling 
Complexit
y 

Increased 
development 
time, 
difficulty 
diagnosing 
performance 
issues. 

Nsight, 
CUDA-
GDB, 
profiling 
tools. 

High 
learning 
curve; 
limited 
automation; 
poor 
integration 
with 
offloading 

Develop 
advanced 
profiling/debugg
ing tools for 
hybrid programs. 

AI-driven 
performanc
e analysis 
and kernel 
optimizatio
n tools. 

Faster 
developme
nt cycles, 
reduced 
debugging 
time, and 
improved 
reliability. 



 
International Journal of Core Engineering & Management 

Volume-6, Issue-10, 2020           ISSN No: 2348-9510 

258 

 

 

frameworks
. 

Scalability 
and Multi-
GPU 
Coordinati
on 

Challenges in 
workload 
distribution 
and 
synchronizati
on across 
GPUs. 

MPI, 
NCCL, 
CUDA 
streams for 
GPU 
parallelism. 

Limited 
automation; 
inefficient 
load 
balancing 
for 
heterogeneo
us tasks. 

Design scalable 
multi-GPU 
scheduling 
algorithms. 

Distributed 
GPU 
frameworks 
with 
adaptive 
load 
balancing. 

Large-
scale 
financial 
model 
acceleratio
n with 
improved 
scalability. 

Runtime 
Adaptabilit
y 

Static 
offloading 
fails under 
dynamic 
workload 
conditions. 

Manual 
runtime 
scheduling, 
workload 
profiling. 

Not 
adaptive; 
lacks real-
time 
optimizatio
n. 

Implement 
adaptive runtime 
scheduling 
between CPU 
and GPU. 

Integration 
of AI 
runtime 
systems for 
dynamic 
resource 
allocation. 

Better 
performan
ce 
consistenc
y and 
adaptabilit
y to 
workload 
variations. 

Integration 
with 
Emerging 
Architectur
es 

Limited 
exploitation 
of novel 
hardware 
capabilities. 

Vendor-
specific 
libraries 
(cuBLAS, 
cuDNN, 
etc.) 

Vendor 
lock-in; 
poor 
portability; 
steep 
learning 
curve. 

Develop 
frameworks 
supporting 
FPGA, TPU, and 
quantum 
accelerators. 

Hybrid 
computing 
platforms 
combining 
GPU, 
FPGA, and 
quantum 
acceleration
. 

Enhanced 
computing 
power, 
reduced 
runtime, 
and 
support 
for 
cutting-
edge 
financial 
models. 

 
 
 

VI. LITERATURE REVIEW 
In this section, give a comprehensive overview of the research in Bridging C++ and CUDA for 
High-Performance Financial Computing, with some short summary information summarized in 
Table III. 
 
Yamato et al. (2019) The automated graphics processing unit (GPU) offloading technology 
proposed in this research is a novel basic technique of Tacit Computing that automatically 
extracts suitable offloading regions from parallelizable loop statements using a genetic 
algorithm. IoT apps may perform better as a result. In a one-hour tuning period, evaluate the 
effectiveness of the proposed GPU offloading approach on five C/C++ image processing, 
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matrix manipulation, and other applications and find that it can process them more than 10 
times quicker than using only central processing units [16]. 
 
Jin and Finkel (2019) The findings show that using vector data types in the kernels is not for 
speed and that more work items are better than large vectors per work item on the GPU. When 
GPU resources are constrained, streams should be handled carefully, However, CUDA streams 
and OpenCL may achieve almost identical GPU performance. When there is only one stream, 
the best performance on the FPGA may be obtained using kernel vectorization utilizing 16 
vector lanes. In addition to reducing the kernel computation time for each stream, increasing 
the vector width per work-item and the number of streams will reduce the number of 
concurrent operations across the streams. The FPGA uses 3.4X less power than the GPU, despite 
the GPU's 3.1X more raw performance. The benefits of kernel offloading over a cutting-edge 
implementation on an Intel CPU server are becoming more and more apparent [24]. 
 
Shin et al. (2019) According to the workload characteristics, this paper proposes a workload-
aware auto-parallelization framework (WAP) for DNN training, which automatically 
distributes the burden over several GPUs. They assess WAP's training throughput using 
TensorFlow against popular DNN benchmarks (AlexNet and VGG-16) and compare it to the 
most advanced frameworks. Additionally, they demonstrate how WAP automatically optimizes 
GPU assignment according to the computational requirements of the application, enhancing 
energy efficiency [25]. 
 
Mortatti, Yviquel and Araujo (2018) This article optimizes the design workflow, reduces the 
complexity of integrating cloud services and removes significant end-user interactions with an 
improvement of OpenMP 4.X. In a ray-tracing application, it uses this technique using a 
simplified version of the engines used in professional 3D modeling software (such as Blender). 
The rendering process is automatically moved from the user computer to a cluster of computers 
in the Microsoft Azure cloud after the calculation is complete. The completed pictures are then 
brought back and shown on the user computer's screen. This provides substantial speedups 
over local execution and a clear programming style [26]. 
 
Lewis and Pfeiffer (2018) offer the TLoops C++ library, which represents operations on tensorial 
quantities using a system of expression templates in single lines of C++ code that replicate 
analytic equations. It is possible to run these expressions in their original form or to generate 
comparable low-level C or CUDA code, which either speeds up the CPU's execution or enables 
a speedy translation to NVIDIA GPUs. The C++-class hierarchy and expression template that 
represent the expressions and enable automated code-generation are described in depth. Then, 
using several NVIDIA GPU generations, provide benchmarks for the expression-template code, 
which generated C code and CUDA code automatically [27]. 
 
Vulcan and Nicolae (2017) The method is comparable to GPU cloud computing, except the 
solution uses heterogeneous hardware and geographically dispersed computers. model is 
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available for usage online as a service. The number of available and running computers serves 
as a representation of the service's nodes. The programmer has the option to select between two 
load balancing methods offered by the service: automated and manual. In this manner, they 
wish to assess the viability of launching a business that offers processing capabilities by leasing 
processing resources from household customers [28]. 
 

TABLE III. SUMMARY OF AUTOMATIC OFFLOADING FOR HIGH-PERFORMANCE 
FINANCIAL COMPUTING 

Referenc
e 

Focus On Key Findings Challenges Limitations 

Yamato 
et al. 
(2019) 

Automatic GPU 
offloading 
using genetic 
algorithms in 
C/C++ 
applications 

Proposed a GPU offloading 
method that extracts 
parallelizable loops automatically; 
achieved up to 10× speed 
improvement over CPU-only 
execution 

Identifying 
optimal offloading 
regions 
automatically, 
balancing between 
automation and 
developer control 

Limited evaluation 
scope (five 
applications); not 
specialized for 
financial 
workloads 

Jin and 
Finkel 
(2019) 

Comparative 
study of GPU 
and FPGA 
kernel 
offloading 
performance 

Found that GPU offers 3.1× 
higher raw performance, while 
FPGA provides 3.4× lower power 
consumption; CUDA and 
OpenCL achieve similar GPU 
performance 

Optimizing kernel 
vectorization and 
managing streams 
effectively 

Performance 
highly dependent 
on workload type 
and vectorization 
strategy 

Shin et al. 
(2019) 

Workload-
aware 
automatic 
parallelization 
(WAP) for 
DNN training 

Automatically distributed 
workload to multiple GPUs; 
improved energy efficiency and 
throughput with TensorFlow 
benchmarks 

Dynamic 
workload 
balancing and 
GPU scheduling 

Limited to DNN 
training; not 
generalized to 
traditional C++ 
workloads 

Mortatti, 
Yviquel 
& Araujo 
(2018) 

Cloud-based 
GPU offloading 
via OpenMP 
extensions 

Extended OpenMP 4.X for 
automatic offloading to Azure 
cloud clusters; achieved 
transparent integration and 
speed-ups over local runs 

Efficient resource 
management in 
cloud 
environment 

Focused on ray-
tracing 
applications; 
latency from cloud 
transfer 

Lewis & 
Pfeiffer 
(2018) 

C++ template-
based 
automatic 
CUDA code 
generation 
(TLoops 
library) 

Developed TLoops library for 
automatic C/CUDA code 
generation from tensorial C++ 
expressions; improved portability 
and execution speed 

Maintaining 
abstraction 
without sacrificing 
low-level 
optimization 

Targeted mainly at 
tensor 
computations; 
requires CUDA-
compatible 
hardware 
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Vulcan & 
Nicolae 
(2017) 

Distributed 
GPU 
computing 
model as a 
cloud service 

Proposed a heterogeneous, 
geographically distributed GPU 
service with manual/automatic 
load balancing 

Coordinating 
distributed nodes 
efficiently; 
ensuring reliability 
over internet 

Prototype-level 
implementation; 
scalability and 
real-world 
validation 
untested 

 
 
VII. CONCLUSION AND FUTURE WORK 
This survey illustrates the importance of bridging C++ and CUDA to enhance financial 
computing performance and highlights the value of using automatic offloading mechanisms. By 
evaluating compiler-assisted, template-based, and framework-based approaches, find that high-
performance computing for financial applications, such as Monte Carlo simulations, option 
pricing, and portfolio optimization, can be achieved with a reduced need for manual effort to 
the benefit of performance. Even with all these approaches, however, there are still challenges 
in compiler compatibility, memory management, parallelization verification, and multi-GPU 
coordination. Although expression templates, code transformation, and AI-assisted offloading 
show promise for finagling solutions, the domain-specific optimizations are still limited in 
practice. Overall, using automatic offloading from C++ to CUDA for financial computing is a 
significant innovation that offers a good balance of developer productivity, code 
maintainability, and high-performance in execution, so financial institutions can productively 
utilize GPU acceleration. 
 
Future research needs to investigate domain-aware automated offloading for financial 
workloads, parallelization accuracy, and memory transfer resource overheads. More research 
on multi-GPU and heterogeneous system coordination will lead to scalable methods. AI-
derived optimization, adaptive runtime profiling, and predictive workload management can 
boost hardware efficiency. Standardizing compiler support across platforms and improving 
debugging tools helps boost adoption. Real-world benchmarks on complex financial models 
will support the claimed performance and efficiency benefits that will enable robust, high-
performance financial computing with minimal human intervention. 
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