i JCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

BRIDGING C++ AND CUDA FOR HIGH-PERFORMANCE FINANCIAL
COMPUTING: A SURVEY OF AUTOMATIC OFFLOADING

Sheshank Kodam

Abstract

High-Performance Computing (HPC) has emerged as a critical component of modern scientific
and industrial innovation, permitting the speedy resolution of more sophisticated, data-heavy
problems. Within the financial sector, where accuracy and computation speed are critical, HPC
techniques have enabled financial institutions to run large-scale simulations, risk analytics,
and algorithmic trading. C++ continues to be the most widely-used language in financial
software engineering because of its efficiency, object-oriented approach, and hardware controls.
Graphics Processing Units (GPUs) using CUDA offer unmatched parallel processing power to
speed up numerical workloads. The integration of C++ and CUDA automatically raises
fundamental challenges associated with programming paradigms, memory management, and
synchronization models. The aim of this paper is to review current implementations of C++ and
CUDA integration in high-performance financial computing with an emphasis on automatic
offloading mechanisms that allow programs to benefit from GPU acceleration without
extensive manual offloading. Summarize compiler-assisted approaches, template-based
programming that retains the flexibility of C++ with a performance increase, and framework-
based approaches. Monte Carlo simulations, option pricing, and portfolio optimization are
among the practical applications of automatic C++-CUDA integration, and the accompanying
talks discuss the pros and cons of existing systems. Scalability, memory management, and
domain knowledge challenges are addressed in the study, which also discusses autonomous
GPU offloading in financial HPC systems.

Keywords: High-Performance Computing, CUDA, C++, automatic offloading, financial
computing, hybrid programming, Monte Carlo simulation.

I. INTRODUCTION
High-Performance Computing (HPC) is an attractive and rapidly evolving field within
computer science. By leveraging parallelism and distributed resources, HPC enables the
solution of complex problems that are beyond the capabilities of conventional systems [1]. It has
found applications across diverse domains such as molecular biology, genetic engineering,
space exploration, cosmology, financial modeling, artificial intelligence, and cryptography.
Broadly, HPC can be classified into three paradigms: Cluster Computing, Grid Computing, and
Cloud Computing. Cluster computing refers to a system in which two or more autonomous
nodes are interconnected to collaboratively solve computationally intensive problems beyond

246

i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

the capabilities of traditional computing systems [2]. By leveraging parallelism and distributed
resources, HPC accelerates computations across domains such as molecular biology,
astrophysics, artificial intelligence, cryptography, and financial modeling. Among these,
financial computing stands out as a domain where computational efficiency is not only a
performance metric but also a direct determinant of economic success [3][4]. The ability to
perform rapid, large-scale computations can influence investment decisions, risk assessments,
and market predictions, tasks that require both speed and accuracy. The economic and social
structure of contemporary civilization is significantly influenced by financial markets [5]. In
recent decades, various statistical and soft computing mechanisms have been proposed to assist
investors and analysts in predicting trends and optimizing decisions across different financial
market segments [6]. However, the growing complexity and scale of financial datasets demand
more powerful computing architectures beyond conventional CPUs [7][8].

C++ has long been recognized as the backbone of high-performance financial software
development. Its combination of execution speed, low-level memory control, and strong type
safety makes it particularly well-suited for computationally intensive financial applications [9].
In domains such as quantitative finance, risk analytics, and algorithmic trading, even
millisecond-level delays can result in substantial financial losses. C++ provides developers with
the flexibility to optimize performance at both the hardware and software levels, making it a
preferred choice for latency-sensitive systems. Financial institutions and fintech firms rely
heavily on C++ to implement pricing models, Monte Carlo simulations, and portfolio
optimization algorithms. The language’s support for object-oriented and template-based
programming allows the development of scalable, reusable components that support complex
mathematical frameworks [10][11]. To further accelerate such computational workloads,
developers increasingly turn to Graphics Processing Units (GPUs), which excel at parallel data
processing. NVIDIA first unveiled the Tesla microarchitecture in 2007 as part of their Compute
Unified Device Architecture (CUDA) parallel computing platform and programming
methodology. Since then, CUDA has evolved across multiple generations, including Fermi,
Kepler, Maxwell, and Pascal architectures [12]. CUDA enables general-purpose GPU
programming, allowing developers to exploit thousands of lightweight threads for numerical
computation. Unlike OpenGL, which was primarily designed for graphics rendering, CUDA
offers a dedicated APl and programming environment focused on general-purpose
computation on GPUs (GPGPU) [13].

While CUDA provides immense computational power, integrating it seamlessly with existing
C++ financial applications remains a significant challenge. Traditional C++ programs are
primarily designed for CPU-based sequential execution, whereas CUDA requires developers to
explicitly define kernels, memory transfers, and device synchronization. This fundamental
difference in programming models complicates the process of porting legacy C++ code to GPU
architectures. Moreover, manual GPU programming demands specialized expertise in parallel
computing and low-level memory management, which increases development complexity and
reduces maintainability. Consequently, despite the clear performance benefits of CUDA, many

247

i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

financial institutions hesitate to fully adopt GPU acceleration due to the high cost and time
involved in rewriting large C++ codebases. Hence, an efficient bridge between C++ and CUDA
is essential to exploit GPU performance while retaining the productivity and stability of C++
environments [14]. To overcome these integration challenges, researchers have developed
automatic offloading techniques, which aim to identify compute-intensive sections of C++ code
and transfer them automatically to GPUs for parallel execution. These methods eliminate the
need for manual CUDA programming by relying on compiler analysis, runtime profiling, and
code transformation tools [15]. Frameworks such as Open ACC, OpenMP 4.5, SYCL, and
Kokkos provide abstraction layers that allow developers to maintain standard C++ syntax while
benefiting from GPU acceleration [16]. In the context of financial computing, automatic
offloading holds significant promise for accelerating simulations, pricing models, and data
analytics without extensive code refactoring. However, the effectiveness of these systems varies
in terms of performance gain, portability, and ease of adoption. Therefore, a comprehensive
survey is necessary to examine existing techniques, evaluate their applicability to financial
workloads, and identify open challenges in bridging C++ and CUDA for high-performance
financial computing,.

A. Structure of the Paper

The paper structure is as follows: Section II reviews automatic offloading frameworks. Section
I covers C++-CUDA integration techniques. Section IV discusses GPU acceleration
applications in finance. Section V outlines challenges and future directions. Section VI reviews
related literature, and Section VII concludes with future work.

II. OVERVIEW OF AUTOMATIC OFFLOADING FRAMEWORKS
In advanced scientific research, the massively parallel architecture of GPU accelerators is being
used to speed up computing workloads. The vast parallelism and energy efficiency of GPU-
based clusters have increased the desire of academics and developers to migrate their
applications to these.

A. Tacit Computing Outline

The technique known as "tacit computing" finds and arranges the appropriate network, cloud,
and device layer resources for users at that time to deliver services tailored to each individual
(Figure 1). The goal of Tacit Computing, despite its three-layer structure, is to handle changes in
real time by processing as much as possible at the device layer, which is closest to the user site.
Through device-layer processing, implicit computing can lower network traffic and stop critical
data breaches. In order to find and use the right devices for users, live data discovery and
device virtualization technologies are essential components of tacit computing.

248

iJCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

Computer Traffic
resource
usage

When a user moves, [Data centric Traffic amount

resources are processing by can be reduced | information is
changed to maintain | utilizing each area || by pr i din
the service device of local dataj| in local area local area

Fig. 1. Outline of Tacit Computing

Technology for live data discovery finds devices that provide consumers the info they need.
Consider a scenario where a fixed-point camera is used to record a person and provides
instruction or warning notifications. The individual in question is only on camera for a brief
moment and is only interested in the portion of the video that they are featured in. Information
that is constantly changing is referred to as live data in this context. Live data discovery
technology assigns analytical jobs to lower levels so that users may locate the vital real-time
information without waiting for it to reach the cloud tier.

Consider a scenario where a user wishes to view videos featuring their buddy who is
competing in a marathon competition. Here, the friend's bib number is entered by the user as a
search key in Tacit Computing.

B. Improvement by offloading specific processing for Tacit Computing applications

In this approach, Tacit Computing helps consumers find and use the right devices, which is a
concept of Open IoT. Nevertheless, Tacit Computing disregards cost and performance when it
employs devices dynamically. If the scenario in instead of tracking a marathon runner, the
preceding part focused on police monitoring of terrorists or town cameras looking for elderly
individuals who have disappeared. As a result, continuous and affordable image analysis
services of camera footage are required [17].

249

&

iJCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

code

AppllcahonJ

1-2. Analyze application code
1-3. Extract offloadable area
1-4_ Quiput intermediate file

Tacit Computing
[

2-1. Deploy binary files
2-2. Measure performances
:_Zrc':fr?é‘m Intermediate file
{ex. CUDA, OpenCL)
o SR oy

Ec| @prmﬂ (o] |

Open IoT Resources 2-5. Provide price and
° performance to a user to judge
I'nl user <

Fig. 2. Steps of automatic offloading

1-1. Specify application code};

2-4. Exiract performance test
cases and run automatically

Automatic
Offloading function

2-3. Deploy final binary files to
production environment

The offload region is extracted from the user application source codes by Tacit Computing,
which then generates the intermediate language, deploys the binary file created from the
intermediate language on the verification machine, runs it, and confirms the offload effect. The
binary file is sent to the production environment and made available as a production service
after Tacit Computing restarts the verification and identifies the proper offload zone. Here,
Figure 2 is used to illustrate the unloading procedures.

Tacit Computing uses the automated offloading technique in 1-1 to allocate user applications,
like as picture processing. To find processing structures like loop statements and library calls
like FFT (Fast Fourier Transformation), the automated offloading feature in apps 1-2 examines
the source code. In 1-3, the automated offloading feature finds and extracts the intermediate
language for off loadable logics, such as loop statements and FFTs, on a GPU or FPGA. In 14,
intermediate files are produced. The extraction of intermediate language happens more than
once, as explained in the next subsection. To determine the ideal offloading location, recursive
extraction and execution are utilized.

The intermediate language binary file is sent to a GPU-FPGA verification machine in 2-1 by the
automated offloading mechanism. Executing deployed files and measuring offloading
performance in 2-2. In order to better unload the region, the automated offloading function goes
back to steps 1-3 and uses the results of performance measurements to derive another pattern.
In phases two and three, it decides on the final offloading area layout and forwards the user's
binary files to production. Performance test cases are extracted from the test case database (DB)
and run by Jenkins or other tools in stages 2-4 to demonstrate user performance following
binary file deployment. Users can choose whether to pay for the IoT service in steps two

250

iJCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

through five after receiving pricing, performance, and other information depending on the
outcomes of performance tests.

C. Proposal of automatic GPU offloading technology using Genetic Algorithm

It is commonly stated that while GPUs can increase throughput through parallel processing,
they cannot ensure latency. Although there are many IoT applications, common examples
include machine learning (ML) processing for large-scale sensor data analysis with various loop
processes and image processing for camera movies. Consequently, try to increase application
throughput by automatically shifting loop activities to the GPU [18].

Generate next generation code patterns
after crossover & mutation

Code
patterns

Selected code

#pragma Deploy & patterns
r-for(} performance
] measurement Select high
Verification performance

machine code patterns

—or(}

5,

1
1:GPU
0:CPU

Fig. 3. Image of GPU offloading area search by GA

CPU

GPU

However, parallel processing in an appropriate location is necessary for optimum performance,
as stated in Section 2. Unless there is a large quantity of data or loops, performance may not
increase when memory data is moved between the CPU and GPU. Parallel processing may not
always provide the best performance for certain loop statement combinations, as it depends on
memory process status and data transfer timing. It might not be the fastest to use a three-
parallelization arrangement when parallel processing can process loop statements #1, #5, and
#10 more quickly than CPU processing in loop statements 10. To find a suitable parallel
processing region, optimize loop statement parallelization or sequentialization through round
robin trials.

A picture of GA activities is displayed in Figure 3. GA models biological evolution using
combinatorial optimization. The GA flow phases include Initialization, Evaluation, Selection,
Crossover, Mutation, and Complete Judgment. Use Simple GA in the recommended manner.
Roulette selection is used to choose genes, which are then flipped from 1 to 0 or vice versa at a
specific rate during mutation. At one point in time, genes move from one individual to another.
This is known as simple GA, which is a simpler variant of GA [16].

251

i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

III. HIGH-PERFORMANCE COMPUTING WITH C++ AND CUDA

High-performance computing in finance often requires both computational efficiency and
programmer productivity. C++ is widely used in quantitative finance due to its efficiency,
object-oriented features, and rich ecosystem for numerical computing. CUDA, NVIDIA’s
parallel computing platform, enables programmers to utilize GPUs' enormous computing
capabilities. Bridging C++ and CUDA enables financial applications—such as Monte Carlo
simulations, option pricing, and risk analysis—to execute computationally intensive tasks on
GPUgs, achieving significant speedups compared to CPU-only implementations [19].

Automatic or semi-automatic integration of C++ and CUDA reduces the manual effort required
to manage device memory, write kernel functions, and handle host-device synchronization,
which are traditionally complex and error-prone. Surveying existing techniques and
frameworks is essential to understand how C++ constructs can be mapped effectively to GPU
architectures for financial computing workloads.

A. C++-CUDA Integration Techniques

Integrating C++ with CUDA can be approached at several levels:

e CUDA Kernels and Device Functions: Traditional integration involves writing CUDA
kernels directly in .cu files and invoking them from C++ host code. The developer is
responsible for overseeing configurations for memory allocation, host-to-device data
transmission, and kernel launch.

e Wrapper Libraries: Libraries like Thrust and cuBLAS provide high-level abstractions for
vector and matrix operations, allowing C++ developers to leverage GPU acceleration
without writing low-level CUDA code.

e Template-Based Approaches: Modern C++ features, such as template metaprogramming,
enable generic programming patterns that can be compiled into efficient CUDA kernels.
This allows automatic generation of GPU code from C++ abstractions.

e Compiler Directives and Pragmas: OpenMP 4.5+, Open ACC, and similar frameworks
allow developers to annotate C++ loops and functions for GPU offloading, where the
compiler handles the translation and scheduling of code on GPU devices.

By combining these techniques, developers can balance performance, portability, and
maintainability in financial HPC applications.

B. Expression Templates and Meta-Programming

Expression templates are a powerful C++ technique that enables lazy evaluation of
mathematical expressions. Instead of performing intermediate computations immediately,
expression templates build a representation of the computation at compile time. This
representation can then be translated into optimized CUDA kernels, minimizing temporary
storage and maximizing parallelism.

252

i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

e Example in Financial Computing: Consider a portfolio risk calculation involving multiple
matrix and vector operations. Using expression templates, the entire computation tree can
be captured as a single expression and offloaded to the GPU as a single kernel launch,
reducing overhead and memory operations.

o Benefits:

o Improves maintainability by keeping financial formulas expressed in readable C++
syntax.
o Enables automatic generation of efficient CUDA kernels from high-level C++ code.
o Reduces runtime overhead and temporary memory allocations.
e Challenges:
o Debugging compile-time errors can be difficult due to heavy template usage.
o Complexity in designing template hierarchies.

C. Code Transformation and Kernel Generation

Code transformation techniques automatically convert C++ constructs into GPU-executable

CUDA code, reducing the need for manual kernel development. Key approaches include:

e Static Analysis and Compiler-Assisted Transformation: Compilers analyze loops,
dependencies, and data structures in C++ code to determine parallelizable regions,
generating corresponding CUDA kernels.

e Genetic Algorithm or Al-Assisted Offloading: Some advanced frameworks evaluate
multiple code partitioning strategies to determine optimal offloading regions automatically,
balancing GPU utilization and minimizing data transfer overhead.

e Automatic Kernel Generation Libraries: Libraries like TLoops and other template-based
frameworks allow developers to write high-level tensor or matrix operations in C++, which
are then transformed into optimized CUDA kernels at compile time.

e Benefits in Financial HPC:

o Enhanced portability across different GPU architectures.
o Improved kernel performance through automated optimization.
o Reduced development time for GPU-accelerated financial algorithms.

¢ Limitations:

o Performance depends heavily on compiler heuristics and GPU hardware
characteristics.
o Transformation frameworks may not capture all domain-specific optimizations.

Table I summarizes the fundamental differences between C++ and CUDA, highlighting their
distinct purposes, execution models, memory architectures, and performance focuses. While
C++ is a versatile, general-purpose programming language designed for a wide range of
applications, CUDA is a GPU-focused parallel computing platform that extends C++ to
leverage massive parallelism for high-performance workloads. This comparison underscores
how C++ and CUDA complement each other in high-performance financial computing.

253

—
iJCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management

Volume-é, Issue-10, 2020

ISSN No: 2348-9510

TABLE I. DIFFERENCE BETWEEN C++ AND CUDA

Aspect C++ CUDA
Purpose General-purpose programming | A programming paradigm and parallel computing
language for building software across | platform created especially for NVIDIA GPUs.
domains.
Execution Runs on CPU (serial or limited | Runs on GPU (massively parallel execution of
parallelism using threads). thousands of threads).
Parallelism Relies on CPU multi-threading and | Uses SIMT (Single Instruction Multiple Thread)
Model parallel libraries (e.g., OpenMP, TBB) for | model to achieve massive parallelism.
concurrency.
Programming | Imperative, object-oriented, and generic | Extension of C++ with GPU-specific constructs
Model programming with templates. such as kernels, threads, and memory management
directives.
Memory Uses CPU memory hierarchy (registers, | Has distinct memory spaces — global, shared,
Architecture | caches, RAM). constant, and registers — requiring explicit
management.
Compilation | Compiled by a standard C++ compiler | Requires CUDA compiler (nvcc) to compile device
(e.g., g*++, clang). (.cu) code alongside C++ host code.
Code Includes functions, classes, templates, | Includes kernels, device functions, thread
Structure and STL constructs. hierarchies, and host-device synchronization.
Development | Broad applications (desktop, embedded, | Specialized for GPU-accelerated computation in
Scope scientific, finance, system software). domains like HPC, Al, scientific computing, and
finance.
Performance | Optimized for single-thread | Optimized for throughput and massive parallelism
Focus performance and algorithmic efficiency. | in compute-intensive workloads.
Ease of Use Mature language with extensive | More complex; requires explicit —memory
libraries and toolchains. management and understanding of GPU
architecture.
IV. APPLICATIONS OF GPU ACCELERATION IN FINANCIAL COMPUTING

Integration of C++ with CUDA is key to high-performance financial computing. By combining
C++'s efficiency and flexibility with GPUs' huge parallel processing capabilities via CUDA,
developers may expedite Monte Carlo simulations, option pricing, and portfolio optimization.
Automatic offloading simplifies GPU-specific code writing, while bridging these two
technologies produces high-performance, maintainable code. This section discusses processes,
frameworks, and strategies for seamlessly connecting C++ applications to CUDA for optimized
financial computations [20].

A. Monte Carlo simulations in statistical physics
Most traditional integration strategies fail for high-dimensional integrals, motivating Monte
Carlo integration. Additionally, typical physical systems' phase spaces have a significant

254

P

—
iJCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

number of dimensions. In three space dimensions, the phase space dimension for N classical
particles is d = 6N since a particle can be described using just three coordinates and three
momentum components. Figure 4 illustrates the Binder ratio's finite-size scaling and the
system's corresponding phase transition behaviour.

1

e — RN
g »%""‘R‘e ; 2D Ising]
0.95 0.95 [L 3
F t S T, = 2.260.
09 [09 F N 1
uo % L E““
08y 085 -3 & I .
& 48 H &]
[[o 5 : %]
08 F 0g [! Y]
[r 1 L
¥ r :]
L e 8
0.75 0.75
22 2.25 2.3 235 2 -1 0 1 2
T LT -)

Fig. 4. Finite-Size Scaling of the Binder Ratio for the 2D Ising Model

Left panel: The two-dimensional Ising model with nearest-neighbor contacts and the
relationship between temperature and its binder ratio. A transition is shown by data that almost
crosses at a single point (the dashed line is the exact known Tc for the two-dimensional Ising
model).

Right panel: Using the known Tc = 2.269. and v = 1, the data in the left panel is scaled to a finite
size. The Binder ratio data is shown against the scaling variable L 1/v [T — Tc]. A universal
curve that shows data for various system sizes indicates that the parameters being utilized are
appropriate.

It is a perfect match for the Monte Carlo integration with significance sampling. States are now
chosen based on the Boltzmann distribution, where P(s) represents the Boltzmann distribution.
This is achieved when the factors cancel out. There is now a challenge in identifying an
algorithm that permits a Boltzmann distribution sampling. It is referred to as the Metropolis
algorithm [21].

B. Optimal trading strategy

The IT uses mid-price innovations to keep her informed before modifying her approach by
determining how to use limit orders and the market to trade in and out of positions between
now and T < T. Market orders guarantee speedy execution but are more expensive since the
trader must pay the spread in addition to liquidity taking expenses. To fill her limit order,
however, the trader must wait for an incoming market order. Limit orders, however, do not
incur costs (they may be eligible for refunds in some markets), but execution is not guaranteed
[22].

The IT only publishes passive orders at the touch (best bid or ask), where * +t={'1£t,..., k&
t} € {0, 1} k indicates that she has decided to post a sell (+) or buy (-) limit order for one unit of
asset at time t, with * i+ t = 0 indicating that there is currently no post. Additionally, suppose

255

i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

that the IT's limit order is filled with probability p = {p1, . . ., pk} each time an incoming market

order is received. Additionally, the number of market orders transmitted by the IT up to time t

is counted by m+ t = {ml+ t..., mk+t} € Zk +.

¢ A uniformed trader who believes that uniformed traders (UTs) lack the ability to generate a
prior or learn from price innovations, hence the midprice dynamics are dictated by an
arithmetic Brownian motion. In this case, the UT’s strategy becomes that of a liquidity-
supplying investor, akin to the models of market makers described in the corpus of current
research.

e The other trader, known as the uninformed learner (UL), has a uniformed background but
has the capacity to learn from market dynamics. In contrast to the UT's, his prior does not
necessarily have an independent normal with mean zero and variance 0 2i T, even though it
is symmetric about the current midprice. Consequently, the UL can get insight from the
midprice trends.

C. Impact of high-performance computing in finance

The advent of the above-mentioned mathematical models and the employment of cutting-edge
workstations to solve them have led to significant advancements, particularly in risk pricing.
The computing power of workstations would be depleted by some of the more intricate risk
pricing models, forcing analysts to employ workstation clusters. Additionally, before a pricing
model is implemented in practice on a group of workstations, it may occasionally be prototyped
and tested using highly performant or massively parallel computers [23].

The majority of models for integrated risk management, especially those that use stochastic
programming, depend on high-performance computers to solve their problems. It has even
been extensively researched in the development of special-purpose parallel algorithms. Finally,
the fact that computer-aided financial product creation entirely relies on high-performance
parallel computations is only a hint that this field of study is still in its early experimental phase.
Expect to see computer-aided design used on a broad range of platforms as it becomes
increasingly common, encompassing workstation clusters, high-end workstations, and maybe
systems with large parallel processing.

V. ROADMAP FOR OVERCOMING CHALLENGES IN C++ AND CUDA-BASED
FINANCIAL HPC

This section presents a comprehensive roadmap for addressing the critical challenges in
integrating C++ and CUDA for automatic offloading in high-performance financial computing.
Table II summarizes each major challenge, its impact on financial HPC, current solutions and
their limitations, and proposes future directions and novel trends to overcome these issues. The
table also highlights the potential impact of these advancements, emphasizing how emerging
techniques such as Al-assisted compilers, domain-specific frameworks, and adaptive runtime
systems can enhance performance, portability, scalability, and efficiency in GPU-accelerated
financial applications.

256

iJC

=

EM

International Journal of Core
Engineering & Management

Volume-é, Issue-10, 2020

International Journal of Core Engineering & Management

ISSN No: 2348-9510

TABLE II. CHALLENGES, CURRENT SOLUTIONS, FUTURE DIRECTIONS, NOVEL TRENDS,
AND IMPACTS IN C++ AND CUDA AUTOMATIC OFFLOADING

Challenge Impact on Current Limitations | Future Direction Novel Potential
Financial Solutions of Current Trends Impact
HPC Solutions
Compiler Inconsistent | CUDA Manual Develop Al- | Cross- Increased
and builds, updates, tuning still | assisted platform portability,
Portability | reduced compiler needed; compilers with | offloading reduced
Issues portability version poor adaptive code | frameworks | developme
across control, automation; | transformation. supporting | nt time,
hardware Cross- limited multiple and wider
and software | platform Cross- GPUs and | deployme
environment | framework | platform heterogeneo | nt across
S. S. support. us systems.
hardware.
Memory Latency and | Unified Still Improved Hardware- | Reduced
Manageme | bandwidth Memory, requires Unified Memory | software co- | latency,
nt and | bottlenecks, | pinned manual and design for | improved
Data reduced GPU | memory, tuning; asynchronous dynamic throughpu
Transfer throughput. | asynchrono | overhead in | data movement | memory t, and
us data | large models. managemen | efficient
transfer datasets. t. memory
APIs. utilization.
Domain- Suboptimal Manual Time- Create financial- | Incorporatio | Improved
Specific performance | kernel consuming; | domain-specific n of domain | accuracy
Optimizati | for financial | tuning, lacks offloading heuristics and
on workloads domain- automation; | frameworks. into GPU | performan
due to | specific non- kernel ce for
generic libraries. scalable for generation. | domain-
frameworks. diverse specific
workloads. algorithms
such as
option
pricing
and risk
modeling.
Debugging | Increased Nsight, High Develop Al-driven Faster
and development | CUDA- learning advanced performanc | developme
Profiling time, GDB, curve; profiling/debugg | e analysis | nt cycles,
Complexit | difficulty profiling limited ing tools for | and kernel | reduced
y diagnosing tools. automation; | hybrid programs. | optimizatio | debugging
performance poor n tools. time, and
issues. integration improved
with reliability.
offloading

257

International Journal of Core Engineering & Management

P

—
iJCEM

International Journal of Core
Engineering & Management

Volume-é, Issue-10, 2020

ISSN No: 2348-9510

frameworks
Scalability | Challenges in | MP], Limited Design scalable | Distributed | Large-
and Multi- | workload NCCL, automation; | multi-GPU GPU scale
GPU distribution | CUDA inefficient scheduling frameworks | financial
Coordinati | and streams for | load algorithms. with model
on synchronizati | GPU balancing adaptive acceleratio
on across | parallelism. | for load n with
GPUs. heterogeneo balancing. improved
us tasks. scalability.
Runtime Static Manual Not Implement Integration | Better
Adaptabilit | offloading runtime adaptive; adaptive runtime | of Al | performan
y fails under | scheduling, | lacks real- | scheduling runtime ce
dynamic workload time between CPU | systems for | consistenc
workload profiling. optimizatio | and GPU. dynamic y and
conditions. n. resource adaptabilit
allocation. y to
workload
variations.
Integration | Limited Vendor- Vendor Develop Hybrid Enhanced
with exploitation | specific lock-in; frameworks computing | computing
Emerging | of novel | libraries poor supporting platforms power,
Architectur | hardware (cuBLAS, portability; | FPGA, TPU, and | combining | reduced
es capabilities. cuDNN, steep quantum GPU, runtime,
etc.) learning accelerators. FPGA, and | and
curve. quantum support
acceleration | for
cutting-
edge
financial
models.
VI. LITERATURE REVIEW

In this section, give a comprehensive overview of the research in Bridging C++ and CUDA for
High-Performance Financial Computing, with some short summary information summarized in

Table III.

Yamato et al. (2019) The automated graphics processing unit (GPU) offloading technology
proposed in this research is a novel basic technique of Tacit Computing that automatically
extracts suitable offloading regions from parallelizable loop statements using a genetic
algorithm. IoT apps may perform better as a result. In a one-hour tuning period, evaluate the
effectiveness of the proposed GPU offloading approach on five C/C++ image processing,

258

i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

matrix manipulation, and other applications and find that it can process them more than 10
times quicker than using only central processing units [16].

Jin and Finkel (2019) The findings show that using vector data types in the kernels is not for
speed and that more work items are better than large vectors per work item on the GPU. When
GPU resources are constrained, streams should be handled carefully, However, CUDA streams
and OpenCL may achieve almost identical GPU performance. When there is only one stream,
the best performance on the FPGA may be obtained using kernel vectorization utilizing 16
vector lanes. In addition to reducing the kernel computation time for each stream, increasing
the vector width per work-item and the number of streams will reduce the number of
concurrent operations across the streams. The FPGA uses 3.4X less power than the GPU, despite
the GPU's 3.1X more raw performance. The benefits of kernel offloading over a cutting-edge
implementation on an Intel CPU server are becoming more and more apparent [24].

Shin et al. (2019) According to the workload characteristics, this paper proposes a workload-
aware auto-parallelization framework (WAP) for DNN training, which automatically
distributes the burden over several GPUs. They assess WAP's training throughput using
TensorFlow against popular DNN benchmarks (AlexNet and VGG-16) and compare it to the
most advanced frameworks. Additionally, they demonstrate how WAP automatically optimizes
GPU assignment according to the computational requirements of the application, enhancing
energy efficiency [25].

Mortatti, Yviquel and Araujo (2018) This article optimizes the design workflow, reduces the
complexity of integrating cloud services and removes significant end-user interactions with an
improvement of OpenMP 4.X. In a ray-tracing application, it uses this technique using a
simplified version of the engines used in professional 3D modeling software (such as Blender).
The rendering process is automatically moved from the user computer to a cluster of computers
in the Microsoft Azure cloud after the calculation is complete. The completed pictures are then
brought back and shown on the user computer's screen. This provides substantial speedups
over local execution and a clear programming style [26].

Lewis and Pfeiffer (2018) offer the TLoops C++ library, which represents operations on tensorial
quantities using a system of expression templates in single lines of C++ code that replicate
analytic equations. It is possible to run these expressions in their original form or to generate
comparable low-level C or CUDA code, which either speeds up the CPU's execution or enables
a speedy translation to NVIDIA GPUs. The C++-class hierarchy and expression template that
represent the expressions and enable automated code-generation are described in depth. Then,
using several NVIDIA GPU generations, provide benchmarks for the expression-template code,
which generated C code and CUDA code automatically [27].

Vulcan and Nicolae (2017) The method is comparable to GPU cloud computing, except the
solution uses heterogeneous hardware and geographically dispersed computers. model is

259

P

—
iJCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management

Volume-é, Issue-10, 2020

ISSN No: 2348-9510

available for usage online as a service. The number of available and running computers serves
as a representation of the service's nodes. The programmer has the option to select between two
load balancing methods offered by the service: automated and manual. In this manner, they
wish to assess the viability of launching a business that offers processing capabilities by leasing
processing resources from household customers [28].

TABLE III. SUMMARY OF AUTOMATIC OFFLOADING FOR HIGH-PERFORMANCE

FINANCIAL COMPUTING
Referenc Focus On Key Findings Challenges Limitations
e

Yamato Automatic GPU | Proposed a GPU offloading | Identifying Limited evaluation

et al. | offloading method that extracts | optimal offloading | scope (five

(2019) using genetic | parallelizable loops automatically; | regions applications); not
algorithms in | achieved up to 10x speed | automatically, specialized for
C/C++ improvement over CPU-only | balancing between | financial
applications execution automation and | workloads

developer control

Jin and | Comparative Found that GPU offers 3.1x | Optimizing kernel | Performance

Finkel study of GPU | higher raw performance, while | vectorization and | highly dependent

(2019) and FPGA | FPGA provides 3.4% lower power | managing streams | on workload type
kernel consumption; CUDA and | effectively and vectorization
offloading OpenCL achieve similar GPU strategy
performance performance

Shin et al. | Workload- Automatically distributed | Dynamic Limited to DNN

(2019) aware workload to multiple GPUs; | workload training; not
automatic improved energy efficiency and | balancing and | generalized to
parallelization | throughput with TensorFlow | GPU scheduling traditional =~ C++
(WAP) for | benchmarks workloads
DNN training

Mortatti, | Cloud-based Extended OpenMP 4.X for | Efficient resource | Focused on ray-

Yviquel | GPU offloading | automatic offloading to Azure | management in | tracing

& Araujo | via OpenMP | cloud clusters; achieved | cloud applications;

(2018) extensions transparent integration and | environment latency from cloud

speed-ups over local runs transfer

Lewis & | C++ template- | Developed TLoops library for | Maintaining Targeted mainly at

Pfeiffer based automatic C/CUDA code | abstraction tensor

(2018) automatic generation from tensorial C++ | without sacrificing | computations;
CUDA code | expressions; improved portability | low-level requires CUDA-
generation and execution speed optimization compatible
(TLoops hardware
library)

260

d

1iJCEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management

Volume-§, Issue-10, 2020 ISSN No: 2348-9510
Vulcan & | Distributed Proposed a heterogeneous, | Coordinating Prototype-level
Nicolae GPU geographically distributed GPU | distributed nodes | implementation;
(2017) computing service with manual/automatic | efficiently; scalability and
model as a | load balancing ensuring reliability | real-world
cloud service over internet validation
untested

VII. CONCLUSION AND FUTURE WORK

This survey illustrates the importance of bridging C++ and CUDA to enhance financial
computing performance and highlights the value of using automatic offloading mechanisms. By
evaluating compiler-assisted, template-based, and framework-based approaches, find that high-
performance computing for financial applications, such as Monte Carlo simulations, option
pricing, and portfolio optimization, can be achieved with a reduced need for manual effort to
the benefit of performance. Even with all these approaches, however, there are still challenges
in compiler compatibility, memory management, parallelization verification, and multi-GPU
coordination. Although expression templates, code transformation, and Al-assisted offloading
show promise for finagling solutions, the domain-specific optimizations are still limited in
practice. Overall, using automatic offloading from C++ to CUDA for financial computing is a
significant innovation that offers a good balance of developer productivity, code
maintainability, and high-performance in execution, so financial institutions can productively
utilize GPU acceleration.

Future research needs to investigate domain-aware automated offloading for financial
workloads, parallelization accuracy, and memory transfer resource overheads. More research
on multi-GPU and heterogeneous system coordination will lead to scalable methods. Al-
derived optimization, adaptive runtime profiling, and predictive workload management can
boost hardware efficiency. Standardizing compiler support across platforms and improving
debugging tools helps boost adoption. Real-world benchmarks on complex financial models
will support the claimed performance and efficiency benefits that will enable robust, high-
performance financial computing with minimal human intervention.

REFERENCES

1. R. Rajak, “A Comparative Study: Taxonomy of High Performance Computing (HPC),” Int. J.
Electr. Comput. Eng., vol. 8, no. 5, pp. 3386-3391, Oct. 2018, doi: 10.11591/ijece.v8i5.pp3386-
3391.

2. J. Dongarra, T. Herault, and Y. Robert, “Fault Tolerance Techniques for High-Performance
Computing,” 2015, pp. 3-85. doi: 10.1007/978-3-319-20943-2_1.

3. B. R. Cherukuri, “Future of cloud computing: Innovations in multi-cloud and hybrid
architectures,” World J. Adv. Res. Rev. vol. 1, no. 1, pp. 068-081, Feb. 2019, doi:
10.30574/ wjarr.2019.1.1.0002.

261

i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

10.

11.

12.

13.

14.

15.

16.

A. Balasubramanian, “Proactive Machine Learning Approach to Combat Money Laundering
in Financial Sectors,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 2, pp. 1-15,
2019.

R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nobrega, and A. L. I. Oliveira,
“Computational Intelligence and Financial Markets: A Survey and Future Directions,”
Expert Syst. Appl., vol. 55, pp. 194-211, Aug. 2016, doi: 10.1016/j.eswa.2016.02.006.

Z. Q. Jiang, W. J. Xie, W. X. Zhou, and D. Sornette, “Multifractal analysis of financial
markets: a review,” Reports Prog. Phys., vol. 82, no. 12, Dec. 2019, doi: 10.1088/1361-
6633/ ab42fb.

V. M. L. G. Nerella, “Automated Cross-Platform Database Migration and High Availability
Implementation,” Turkish J. Comput. Math. Educ., vol. 9, no. 2, pp. 823-835, Jul. 2018, doi:
10.61841/turcomat.v9i2.15284.

S. S. S. Neeli, “Serverless Databases: A Cost-Effective and Scalable Solution,” Int. J. Innov.
Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 6, pp. 1-7, 2019.

R. S. Dehal, C. Munjal, A. A. Ansari, and A. S. Kushwaha, “GPU Computing Revolution:
CUDA,” in 2018 International Conference on Advances in Computing, Communication
Control and Networking (ICACCCN), IEEE, Oct. 2018, pp. 197-201. doi:
10.1109/ICACCCN.2018.8748495.

D. J. Dufty, “Beyond Object-Orientation: C++ Application Design for Computational
Finance - A Defined Process from Problem to Parallel Code,” Wilmott, vol. 2018, no. 93, pp.
60-69, Jan. 2018, doi: 10.1002/ wilm.10647.

S. S. S. Neeli, “The Significance of NoSQL Databases: Strategic Business Approaches and
Management Techniques,” J. Adv. Dev. Res., vol. 10, no. 1, pp. 1-11, 2019.

V. M. L. G. Nerella, “MIGRATE: A Rollback-Enabled Framework for Automated Oracle
XTTS-Based Cross-Platform Database Migrations,” J. Electr. Syst., vol. 14, no. 4, pp. 85-95,
2018.

R. S. Dehal, C. Munjal, A. A. Ansari, and A. S. Kushwaha, “GPU Computing Revolution:
CUDA,” in 2018 International Conference on Advances in Computing, Communication
Control and Networking (ICACCCN), 2018, PP- 197-201. doi:
10.1109/ICACCCN.2018.8748495.

P. Diehl, M. Seshadri, T. Heller, and H. Kaiser, “Integration of CUDA Processing within the
C++ Library for Parallelism and Concurrency (HPX),” in 2018 IEEE/ ACM 4th International
Workshop on Extreme Scale Programming Models and Middleware (ESPM?2), IEEE, Nov.
2018, pp. 19-28. doi: 10.1109/ ESPM2.2018.00006.

C. Ceissler, R. Nepomuceno, M. Pereira, and G. Araujo, “Automatic Offloading of Cluster
Accelerators,” in 2018 IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), IEEE, Apr. 2018, pp. 224-224. doi:
10.1109/FCCM.2018.00058.

Y. Yamato, T. Demizu, H. Noguchi, and M. Kataoka, “Automatic GPU Offloading
Technology for Open IoT Environment,” IEEE Internet Things J., vol. 6, no. 2, pp. 2669-2678,
Apr. 2019, doi: 10.1109/]J10T.2018.2872545.

262

i JICEM

International Journal of Core
Engineering & Management

International Journal of Core Engineering & Management
Volume-é, Issue-10, 2020 ISSN No: 2348-9510

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

E. S. Mtsweni and N. Maveterra, “Issues affecting application of tacit knowledge within
software development project,” Procedia Comput. Sci., vol. 138, pp. 843-850, 2018, doi:
10.1016/j.procs.2018.10.110.

Y. Yamato, T. Demizu, H. Noguchi, and M. Kataoka, “Proposal of Automatic GPU
Offloading Technology on Open IoT Environment,” in 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), 2018, pp. 634-639. doi:
10.1109/ COMPSAC.2018.10309.

M. Springer and H. Masuhara, “Ikra-Cpp: A C++/CUDA DSL for Object-Oriented
Programming with Structure-of-Arrays Layout,” in Proceedings of the 2018 4th Workshop
on Programming Models for SIMD/Vector Processing, New York, NY, USA: ACM, Feb.
2018, pp. 1-9. doi: 10.1145/3178433.3178439.

R. Oras, S. Mugel, and E. Lizaso, “Quantum computing for finance: Overview and
prospects,” Rev. Phys., vol. 4, p. 100028, Nov. 2019, doi: 10.1016/j.revip.2019.100028.

R. G. McClarren, “Introduction to Monte Carlo Methods,” in Computational Nuclear
Engineering and Radiological Science Using Python, Elsevier, 2018, pp. 381-406. doi:
10.1016/B978-0-12-812253-2.00024-8.

A. Cartea, S. Jaimungal, and D. Kinzebulatov, “Algorithmic Trading with Learning,” Int. J.
Theor. Appl. Financ., vol. 19, no. 4, 2016, doi: 10.1142/5021902491650028X.

L. Hong, L. Zhong-hua, and C. Xue-bin, “The Applications and Trends of High Performance
Computing in Finance,” in 2010 Ninth International Symposium on Distributed Computing
and Applications to Business, Engineering and Science, IEEE, Aug. 2010, pp. 193-197. doi:
10.1109/ DCABES.2010.45.

Z. Jin and H. Finkel, “Base64 Encoding on Heterogeneous Computing Platforms,” in 2019
IEEE 30th International Conference on Application-specific Systems, Architectures and
Processors (ASAP), IEEE, Jul. 2019, pp. 247-254. doi: 10.1109/ ASAP.2019.00014.

S. Shin, Y. Jo, J. Choi, S. Venkataramani, V. Srinivasan, and W. Sung, “Workload-aware
Automatic Parallelization for Multi-GPU DNN Training,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, May
2019, pp. 1453-1457. doi: 10.1109/ICASSP.2019.8683053.

M. Mortatti, H. Yviquel, and G. Araujo, “Automatic Ray-Tracer Cloud Offloading in
OPENMP,” in 2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), IEEE, Sep. 2018, pp. 428-435. doi:
10.1109/ CAHPC.2018.8645871.

A. G. M. Lewis and H. P. Pfeiffer, “ Automatic generation of CUDA code performing tensor
manipulations using C++ expression templates,” pp. 1-47, 2018.

A. M. Vulcan and M. Nicolae, “A smart grid model for high performance computing
service,” in 2017 10th International Symposium on Advanced Topics in Electrical
Engineering (ATEE), IEEE, 2017, pp. 925-928. doi: 10.1109/ ATEE.2017.7905124.

263

