

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

367

BUILDING CI/CD PIPELINES FOR AUTOMATED DEPLOYMENTS USING

GITLAB

Anil Kumar Manukonda
anil30494@gmail.com

Abstract

The modern software development framework Continuous Integration and Continuous
Delivery (CI/CD) serves as a foundation for modern engineering through automation-driven
fast deployments. The research document provides an extensive analysis of GitLab-based
CI/CD pipeline development for automated deployments while considering large enterprise
deployment needs. The introduction starts by explaining CI/CD fundamentals while
emphasizing the significance of automation which advances software delivery speed and
enhances product quality. A review examines GitLab CI/CD system integration which has
surpassed traditional tools including Jenkins. This section analyzes important research
materials and updates from industry publications about DevOps adoption metrics in addition
to performance indicators. The paper details CI/CD pipeline architecture through an example
diagram showing how GitLab handles code commits up to production deployment. The
essential aspects of GitLab CI/CD are examined through an analysis of the.gitlab-ci.yml
configuration syntax as well as an explanation of GitLab Runners along with essential
pipeline keywords that are presented in tables. A complete guide illustrates the process of
establishing GitLab projects followed by pipeline setup instructions and demonstrates
automatic deployment integration through Docker, Kubernetes, and Terraform using specific
examples. The document presents best practice guidance related to security alongside
scalability and performance standards while summarizing the secrets management process and
pipeline optimization and deployment approaches using blue-green along with canary and
rolling methods in a comparison table. Using financial institutions along with e-commerce
businesses and healthcare providers the paper demonstrates practical implementations of
GitLab CI/CD pipelines that have led to speedier delivery cycles and better system
trustworthiness. The presentation includes analysis of typical difficulties during enterprise
CI/CD implementation as well as recommended solutions that address these obstacles. The
single-platform approach of GitLab activates quick software delivery that promotes
collaboration and governance thus enabling big organizations to develop new solutions
promptly while meeting requirements for quality and compliance.

Keywords: GitLab, CI/CD Pipelines, Continuous Integration, Continuous Delivery, Pipeline as
Code, .gitlab-ci.yml, YAML, Automation Server, DevOps, Automated Testing, Unit Testing,
Integration Testing, End-to-End Testing, Artifact Management, Git Integration, Source Control
Management, Docker, Kubernetes, Terraform, Infrastructure as Code, GitLab Runner, Shared
Runners, Dedicated Runners, Blue-Green Deployment, Canary Deployment, Rolling

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

368

Deployment, Build Agents, Slack Notifications, Manual Approval Gates, Role-Based Access
Control (RBAC), Security Credential Management, Static Code Analysis, SAST, DAST,
Dependency Scanning, Container Scanning, Quality Gates, Declarative Pipeline, Pipeline
Templates, Parallel Jobs, Monitoring, Backup Strategies, GitLab Environments, Scalability,
Financial Industry, Healthcare Applications, E-commerce, Compliance, Governance,
Performance Optimization, Multi-branch Pipeline, Artifact Versioning, Notification Systems,
Error Handling, Rollback Procedures, GitLab Plugins, Audit Logging, Credential Binding,
Secure Access, Runner Isolation, Disaster Recovery, Best Practices, Pipeline Resilience,
Automation Systems, Cloud Deployment, Cloud Runners, GitOps, AI-assisted Pipeline
Optimization, Merge Requests, Protected Branches, Protected Environments, Compliance
Pipelines, Security Dashboard, Secret Management, Feature Flags, Review Apps, Dynamic
Environments, Deployment Strategies, Test Coverage, Pipeline Analytics, Self-Managed
Runners, SaaS Runners, DRY Pipelines, Centralized Templates, DevSecOps, Change
Management, Traceability, Audit Trails, Approval Workflow, Legacy Integration, Cultural
Change, Organizational Adoption, Continuous Improvement, Zero Downtime Deployment,
Version Tagging, Artifact Retention, Runbooks, Automated Rollbacks, Health Checks, Canary
Analysis, Argo Rollouts, Spinnaker, Kubernetes Operators.

I. INTRODUCTION
Continuous Integration (CI) refers to the practice of automatically testing code which gets
merged into the shared repository multiple times daily. CD prolongs automated release
management through its capability to deploy validated code to production at any desired time.
The CI/CD pipeline operates a sequence of programmed steps for code integration followed by
compilation and testing and finally leading to deployment which executes automatically for
each source revision. The automated process works to reduce feedback time while enabling
users to obtain software through fast repetitive updates [1].

The essential basis of software delivery pipeline automation serves to speed up release
schedules and create stable systems. CI/CD automation tools accelerate the delivery of new
features and bug fixes so teams can serve customer requirements before manual release
methods would finish. The format which enables early detection of integration problems and
bugs through every code commit helps CI/CD systems lower system failure costs and decrease
time systems remain unavailable. The deployment process transitions to repeatable methods
which produce dependable tasks especially important for big systems structures. Organizations
that implement CI/CD experience faster lead times along with increased deployment
frequencies which creates better business effects. The elite performers in DevOps according to
the DevOps Research and Assessment (DORA) study present multiple daily deployments but
low performers only execute one deployment during six-month periods. These automated
pipelines supply immediate feedback which results in enhanced quality together with secure
releases. Digital services enterprises require automated CI/CD as their foundation for achieving
both high agility and reliability in today's fast-moving environment [1][2].

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

369

GitLab functions as an all-encompassing DevOps solution which unites code management with
integrated continuous integration and delivery functions that create one unified application to
operate through the complete software development process. The main advantage of using
GitLab since traditional CI tools (such as Jenkins) requires different plugins and disconnected
services because GitLab merges code repository functionality with issue tracking and CI/CD
pipeline processing and deployment automation into one cohesive system framework. The
integrated approach of this system minimizes both operational complexities from running
several tools and the communication gaps that develop between writing code and releasing it.
The GitLab CI/CD automates pipeline triggers through code push detection and merge
requests while performing distributed tasks across multiple runners that include built-in
security analysis functions. Enterprise users obtain comprehensive visibility from GitLab
because every code modification can be tracked through the deployment pipeline to
deployment while accessing audit logs and metrics from one central location. The GitLab
CI/CD solution surpasses Jenkins since it operates seamlessly with built-in functions and
showcases superior scalability compared to plugins and external scripts usage. The internal
GitLab CI/CD system eliminates the need for teams to manage complicated multiplugin
systems and their associated toolchains. GitLab provides efficient developer onboarding
because new team members need to learn only one user interface while reducing contexts they
need to switch between. GitLab enhances its feature set with Auto DevOps (robust automated
pipeline generation for multiple project types) together with advanced container registry
management and Kubernetes platform capabilities which makes it extremely useful for modern
enterprise deployments. Through DevSecOps integration the platform enables developers to
execute security and compliance inspections (SAST, DAST, license compliance and others)
smoothly within the pipeline system. The combination of version control and continuous
integration and delivery and deployment elements in GitLab transforms into a unified system
that speeds up software delivery through better teamwork alongside enhanced governance
control for enterprise organizations [1].

II. ARCHITECTURE OF CI/CD PIPELINES
Pipeline stages and flow: CI/CD pipeline consists of conceptual sequence that tracks code
changes from development to production deployment. A basic CI/CD process integrates
compile (Build) then perform tests (Test) and finally deploy to environments (Deploy) starting
from development. The pipeline structure allows developers to add new analysis or testing
phases as security scanning and performance testing or static code analysis when needed. The
workflow of the pipeline launches automatically through pre-defined processes when a code
event triggers the execution. This typically occurs with commits or merges into the system.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

370

Figure 1: Simplified CI/CD pipeline flow from code commit to deployment.

The linear example executes Build jobs first after which multiple parallel Build jobs run and
before moving onto Test jobs followed by the Deploy stage. The pipeline moves to the next
stage only after Build completes without errors. Test follows in a similar manner before Deploy.
A deployment should only happen after code completes the build and testing processes. The
pipeline visual graph demonstrates each stage through its included jobs alongside the
dependence relations between those stages.

The current version of GitLab and contemporary CI/CD software enable complex directed
acyclic graph (DAG) pipelines which override sequential stage execution with dependency-
centered control. A particular test job need not wait for every build job because it depends
solely on selected artifacts. The efficiency of large projects improves through DAG pipelines
since they enable independent job execution across stage boundaries. All pipelines function
through an automatic code promotion system that moves changes through different quality
control checkpoints towards deployment after successful checks.

GitLab CI/CD pipeline example: The configuration declaration behind GitLab CI/CD
pipelines consists of YAML code files which execute based on specific triggers generated by
push events and merge request activities. The GitLab pipeline orchestrator activates available
runners to execute the scheduled jobs of the pipeline after a trigger event occurs. Web
application pipelines encompass three main stages including dockerization during Build,
testing with tests within the container during Test and image deployment to the registry along
with Kubernetes cluster update during Deploy. Users can view pipeline stages with color-
indicators for job execution results through the GitLab graphical user interface. A failed job will

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

371

normally lead the pipeline to monitor failed status while skipping stages unless manual
configuration takes precedence. The development team becomes aware right away that
problems were added through the latest commit. The success of each job indicates release-
readiness for the code which leads to automatic deployment via the deploy stage. A continuous
deployment model updates production immediately yet a continuous delivery pipeline waits at
its staging deployment to obtain manual approval which advances to production.
The system uses both reports and emits artifacts throughout its operation. Stage-to-stage
transfers of compiled binaries along with test results and coverage reports function as artifacts
and developers can inspect these items after downloading them. The merge request interface of
GitLab includes both test summary reports and code coverage analysis for developers to
monitor their code instantly. Pipeline run versions enable complete traceability because one can
identify which commit SHA along with deployment configuration produced each deployment
that helps resolution of compliance and debugging issues. Enterprise auditing capabilities
frequently emphasize traceability because deployment events link to user actions through
pipeline runs which helps with change management activities.

Figure 2: Diagram of GitLab CI/CD pipeline.

A typical GitLab pipeline for a microservice might look like:

 Stage 1: Build – Jobs: compile code, build Docker image.

 Stage 2: Test – Jobs: run unit tests (maybe split across multiple jobs for different test suites),
run static analysis, run security scans (SAST).

 Stage 3: Integration Test – Jobs: deploy to a temporary environment and run integration or
API tests.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

372

 Stage 4: Deploy – Jobs: deploy to staging (automatic), deploy to production (manual trigger
or automatic if using continuous deployment).

Quality checks affecting stages 1 - 3 will run automatically on all main branch commits and
merge requests. Stage 4 operates according to specified conditions that include code being
merged into the main branch or release branches. The pipeline rules serve to control when the
testing occurs. The pipeline system makes sure that code which passes testing validation
reaches production.

The GitLab pipeline graph shows a structured display of multiple columns (each column
represents a stage) that include job boxes. The dependencies between jobs become apparent
through lines or arrows connecting them in the pipeline structure (this functionality could also
use the needs: relationships from GitLab CI to accelerate early job execution). The build jobs
must finish their execution before test jobs can begin while deployment jobs need tests to
complete. Manual approval jobs in GitLab pipelines remain available as when: manual jobs
which require a user click of the "Play" button for proceeding with the pipeline. The same
pipeline automation allows enterprises to execute their change control processes through this
method.

A GitLab CI/CD pipeline operates through three main elements which include triggers and a
predefined workflow sequence for stages and jobs that executes through runners. The system
performs complete automation that extends from code commit to deployment operation along
with distinct visibility features at all stages. A description follows about configuring pipeline
execution through GitLab's CI/CD system.

III. GITLAB CI/CD FUNDAMENTALS
Pipeline configuration with .gitlab-ci.yml file: The configuration of GitLab CI/CD pipelines
relies on a YAML file named .gitlab-ci.yml which should be located in the repository root
directory. This file describes the pipeline’s stages and the jobs within each stage. The .gitlab-
ci.yml file automatically detects the presence after users push all changes to the repository. This
detection triggers the definition of the pipeline structure for the entire project. The .gitlab-ci.yml
syntax includes both collection of keywords like stages and script in addition to mapping jobs.
The minimum setup details for such a configuration would appear as follows:

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

373

Code 1:sample pipeline configuration.

The pipeline contains three execution stages which we named build, test, deploy. The jobs
included build_app which performs during the build stage and test_app performing in the test
phase along with deploy_prod which executes during deploy. A job contains a script section
that shows the shell commands for execution. In addition to environment declaration for GitLab
tracking it specifies when user authorization through the manual keyword and only runs from
main tokens. The configuration blocks production deployment for branches except main since it
applies only to the main branch.

GitLab spawns one job per definition during pipeline execution while performing stage-based
execution in the specified rules order.

Role of GitLab Runners: The CI job execution process is managed by GitLab Runner acting as
the agent. The GitLab Server functions only as a repository and pipeline definition storage
system since it delegates each job execution duty to an independent Runner. The agent process
that executes CI jobs called GitLab Runner operates on VMs together with containers and
Kubernetes infrastructure while using shell and Docker and Kubernetes executors to execute job
scripts. If your organization follows an enterprise model it can maintain a group of runners
which run jobs simultaneously. A portion of Runners serve as shared resources but particular
runners function exclusively for vital teams and projects.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

374

When a Runner receives a job it creates the environment first such as starting a Docker
container based on the specified image: parameter then it proceeds with script execution. The
GitLab server receives and displays live pipeline logs through its stream process. The system
notifies the server about job completion status after the execution finishes. Job runners maintain
two functionalities: the ability to transfer defined artifacts back to the server storage and the
implementation of caching protocols for run-time acceleration.

Figure 3: GitLab CI/CD architecture

A job can specify tags for execution selection through which it finds matching Runners based on
their designated labels. The CI system receives scalability through the "Runners" components
since you can scale up the number of runners to handle multiple concurrent tasks or implement
automatic cloud runner scale-ups. Enterprise CI implementations usually establish two types of
runners: shared(Grid) runners which serve primary job execution needs and individual runners
which host special resources like on-prem databases used by specific teams for integration
testing.

Key pipeline keywords and their functions: The .gitlab-ci.yml file operates using a basic
declaration syntax. The following table presents crucial GitLab CI/CD keywords together with
their specific functions:

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

375

Table 1: Common GitLab CI/CD .gitlab-ci.yml keywords and their functions.

Engineers utilize these keywords for developing pipeline execution patterns. Expensive deploy
jobs will stay off feature branches because of the only/rules statement and builds become faster
through cache reuse while artifacts transfer build outputs without repeating builds. The image
keyword proves to be exceptionally powerful because it creates independent clean working
environments for each job. If a user does not provide an image in their configuration, then
GitLab will use a default one whereas specifying a targeted image choice like a Node version or
Python interpreter maintains consistent environments for all runners.

Pipeline execution and example: Changes submitted to the repository pass through GitLab CI
verification of the.gitlab-ci.yml before creating a pipeline. Pipeline creation happens when the
configuration passes the validation check. Jobs in the pipeline will follow the defined stages as
groupings. The GitLab UI presents a pipeline structure that displays Stage 1 named “build”
along with its contained “build_app” job while Stage 2 is titled “test” with its “test_app” job
followed by Stage 3 titled “deploy” with its “deploy_prod” job. You will observe job log
displays when the pipeline runs. Build_app failures will prevent test_app along with
deploy_prod from performing (due to default on_success job execution) After both build and
test pass, the deploy_prod job will remain in the ready state with a “play” button due to its
manual status. Through the user interface the release manager can initiate the deployment to
production by clicking play.

The.gitlab-ci.yml file enables extend and includes features that allow users to reduce
duplication in their CI/CD definitions. When developing jobs one can develop common
templates using YAML files that become reusable across multiple projects by including them
centrally while inherits allow you to modify specific aspects from a parent job. The enterprise
benefits greatly from using this functionality due to its ability to enforce essential jobs (security
scans) across multiple pipelines through code preservation.

Both GitLab Runners and the .gitlab-ci.yml define the fundamental structure of a CI/CD

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

376

pipeline management system. Knowing the fundamentals of these elements will enable us to
create an operational GitLab CI/CD pipeline. The following part includes an actionable guide
that demonstrates how to establish an automated deployment pipeline for empty GitLab
projects using multiple integrated technologies.

IV. STEP-BY-STEP GUIDE
This section demonstrates how to establish a CI/CD pipeline on GitLab by showing platform
configuration and Docker-Kubernetes-Terraform integration steps. The guide presents
information about building practical experience with constructing and operating automated
deployment pipelines.

1. Creating a GitLab project: Open your GitLab instance through the web application and

proceed to establish a new project. Creating a single repository for source code represents an
appropriate starting point when deploying a basic web application. Projects at GitLab can be
built through two methods: new projects from the web UI with blank selection or template
options or through existing repo imports. Move your application code to the GitLab
repository after you establish a new project. From this point you can proceed to enable
necessary project settings including setting up CI/CD variables for secret storage and
configuring runners under the Settings CI/CD page. SaaS users have built-in access to
shared runners on GitLab therefore they can start using the platform without performing
any additional runner setup. A self-managed GitLab requires at least one GitLab Runner for
pipeline execution but you will find the required runner token together with registration
instructions inside the same settings section.

2. Writing and configuring .gitlab-ci.yml: Create a .gitlab-ci.yml file in your project’s

repository base directory. This file establishes the CI/CD pipeline rules and conditions. We
can establish a basic pipeline by creating a Docker image build process that deploys the
application to Docker registry and container environments as a first example.

Code 2: simple pipeline that builds a Docker image.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

377

In this YAML: Our system consists of two operations which are build and deploy. The
build_image job utilizes Docker to construct and distribute the application container image
from its container registry (available as $CI_REGISTRY_IMAGE) within GitLab. The
docker:dind service allows a docker build command from within this job processing
environment because Docker Engine is enabled. Registry login procedures take place before
building with CI/CD variables that include CI_REGISTRY_USER and PASSWORD provided by
GitLab for project registries. The deploy_k8s job currently represents a deployment operation
that might utilize the k8s-manifest.yaml file with the newly pushed image. Job execution is
limited to main branch commits because deployments only need to happen from main branch
changes.

Add and push the written file to the repository after completing it. The pipeline execution
process will begin provided there are available runners dedicated to the project. You should
now view an active pipeline through the GitLab interface that consists of the specified stages.
The Docker image building process at the build stage represents the first step before Docker
image push operations occurs. Successful execution of this commit will activate the deploy
stage to apply on the Kubernetes cluster if it belongs to the main branch.

3. Integrating with Docker: Integration of Docker is already present in the previous example.

The CI component in GitLab enables users to construct Docker images through its job
operations. Our application makes use of the docker:dind service as demonstrated. The
Docker-in-Docker method provides a simple solution yet another option exists to build
images using Kaniko or BuildKit through Kubernetes runners. You should consider layer
caching during Docker Image building in CI because it accelerates build times (GitLab
caching or progressive image tags help achieve this). All projects in GitLab include a
Container Registry function which provides private image storage accessible through
$CI_REGISTRY_IMAGE. The latest tag serves as our script’s primary choice for simplicity
while you can alternatively use commit SHA ($CI_COMMIT_SHA) or version number for
image tagging followed by pushing. The method provides a link between specific versions
of code and their corresponding image files.

4. Integrating with Kubernetes: GitLab provides a comprehensive Kubernetes integration

system to its users. Two available methods allow developers to deploy Kubernetes systems
through GitLab CI:

 You provide Kubernetes access to the CI runner either by storing kubeconfig files or
utilizing GitLab Kubernetes Agent to implement kubectl or Helm deployments through
jobs. Docker images that prepackage kubectl/helm tools are used or installation happens in
the before_script conditions. The CI environment of GitLab can retrieve Kubernetes
configuration through stored CI variables while the built-in agent option enables a secure
connection between CI and the cluster.

 The Kubernetes integration of GitLab includes GitLab Agent / CI Tunnel which users install

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

378

within their cluster. The deployment procedure becomes simpler through the use of this
agent. You can utilize GitLab’s CI/CD Tunnel to establish cluster connections without
disclosing any credentials during CI deployment. GitLab’s documentation “Using GitLab
CI/CD with a Kubernetes cluster” outlines how to deploy an agent followed by the
execution of kubectl commands through this agent. The agent enables GitOps-style
deployment through which users can deploy Kubernetes manifest changes to their
repositories regarding deployment automation.

The implementation of our kubectl apply uses a direct command. The Kubernetes cluster
requires access credentials to proceed with the operation. When the cluster configuration
enables the runner to acquire network access it can then reach the cluster. The Kubernetes
configuration needs protection as a variable before running the following command:

Code 3: Simple pipeline code for Integrating with Kubernetes.

The variable $KUBE_CONFIG contains the kubeconfig contents which come from a masked CI
variable. The GitLab agent operates as an alternative solution because it bypasses config
transfer to CI while the job can execute kubectl apply -f commands anonymously given proper
agent configuration.
GitLab CI maintains flexibility to deploy resources to Kubernetes either via initial direct
deployment or through GitOps-based methods. Helm charts serve as deployment tools in many
organizations while CI systems execute the helm upgrade --install command in a similar
manner.

5. Integrating with Terraform (Infrastructure as Code): Companies manage their cloud

resources through the use of Terraform despite managing infrastructure. The GitLab CI
system enables automation of Terraform operations which allows users to execute plans and
cloud infrastructure implementations through automated processes. The platform of GitLab
provides integrated Terraform state backend functionality that allows users to store their
Terraform state file safely. Such a basic Terraform pipeline follows validation and planning
before application. The HashiCorp Terraform command suite includes init, plan and apply
that CI can execute. CI variables should contain cloud credentials (AWS keys and others)
which need protection and must be accessible to the job.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

379

Code 4: .gitlab-ci.yml snippet for Terraform.

The pipeline depends on the official Terraform Docker image to execute its command
sequences. The pipeline executes a terraform init by referencing GitLab’s Terraform state
through the project’s Terraform state API endpoint and then performs the terraform validate to
check for syntax errors. We produce a binary plan during the planning phase which we save to
artifacts. The apply stage requires manual intervention whenever applied to main version only
through human inspection. The apply job depends on an existing plan job to extract and utilize
the artifact data. Infrastructure changes can be examined through the plan within merge
requests before applying them using a single button action. The GitLab system shows
Terraform plan output in merge request widgets after proper configuration so users can easily
view changes.

6. Running the pipeline and reviewing results: Each push execution of the CI configuration

starts the pipeline operation. Developers can monitor the current stage execution in real
time and observe logs while having the ability to download artifacts. A newly added feature
through a merge request activates the pipeline to build Docker image deployments and
execute tests that ultimately reach a test environment for integration testing. The successful
completion of these checks permits the MR to reach approved status for merger. Following
an automatic merge to main the system should deploy to production either by itself or

through manual intervention of the deployment process. The status badges (✓ or ✕)
displayed by GitLab appear throughout both commits and MRs to show pipeline results.
The system tracks complete pipeline records which can be used for traceability purposes.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

380

7. Screenshots and pipeline visibility: During an interactive discussion one should display
pictures from the GitLab Pipeline User Interface which demonstrates both stages along with
jobs. A visual representation of pipeline operations would display stage progress through
vertical rows or it could display test execution currently running as an image. The
documentation would present the two-stage pipeline structure on GitLab pipelines UI. The
build stage contains only one job called build_image and deployment job deploy_k8s
operates when targeting the main branch. Other branches get skipped due to the only rule.
Each stage of Docker build activity and Docker layer push actions would appear together
with kubectl apply resource creation outputs in the user interface.

The GitLab Environments feature enables users to track deployment activity when we apply
environment: production to a job which creates a registered “production” environment with its
pipeline/job-linked history displayed. Such deployments provide crucial benefits that let users
view which version is active at each location and enable interface-based deployment
confirmation and backward version handling.

8. Additional integrations (optional): GitLab CI/CD functions as an integration platform with

numerous tools available in its system.

 Notifications: The platform enables users to personalize notifications for pipeline success
and failure through email and Slack alerts or by utilizing the built-in features.

 Testing and Coverage: JUnit test reports and code coverage get processed automatically by
GitLab when the job creates these reports as artifacts. The combination of -- junit.xml with
the configuration artifacts:reports:junit: junit.xml generates test result presentation in the
user interface.

 Parallel Jobs: The testing process becomes faster when you distribute tests between parallel
jobs (GitLab accepts parallel: keyword instructions or you can create several duplicate job
configurations).

 Manual Review Apps: The Review App feature of GitLab (which operates along with
Kubernetes) allows developers to create temporary environments for each merge request
through automated deployment. The combination of environment:
review/$CI_COMMIT_REF_NAME in a job enables you to create a live preview URL for
branches which provides helpful application previews during e-commerce project
collaboration with product managers and QA testers. GitLab tracks and automatically
cleans dynamic environments through a system that functions during merge operations.

 Security scans: The process of enabling SAST dependency scanning or container scanning
becomes easy through the use of GitLab's existing CI templates. The Security/SAST.gitlab-
ci.yml template within your include dictionary will implement an automatic sast job for
code vulnerability scanning. Security dashboard and MR widget display the security test
results.

The specific elements can get added section by section to the workflow as required. Start by
running basic CI with testing pipeline functionality followed by deployment procedures for

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

381

staging environments then databases with dependent infrastructure before implementing
quality examinations and security checks throughout the process.

The procedure described above enables you to create an operational CI/CD pipeline on GitLab
that runs application builds and tests then packages them as containers before deploying to
infrastructure. The execution of these processes occurs automatically through code commits
while following the rules written in .gitlab-ci.yml. We will discuss best practices to enhance
such pipelines in the following section specifically regarding security and performance
alongside deployment strategies.

V. BEST PRACTICES
Creating CI/CD pipelines at an enterprise level demands more than automatic setup because
security measures must be implemented alongside efficiency features and maintenance
capabilities. This section details proven security practices and the best approaches to strengthen
scalability and optimize performance followed by an examination of popular deployment
methods.

Security best practices for CI/CD pipelines:

 Protect secrets and sensitive data: Pipeline configurations and source code must avoid
including secrets such as API keys and passwords as hard-coded elements. Users should
store their secrets in protected and masked variables through GitLab CI/CD in order to
achieve secure storage. The system injects these elements when it runs during execution
time without displaying them in log output. Secret access should be restricted to specific
runners that can only operate on certain protected branches such as main (e.g., production
deploy keys).

 Use least privilege: CI jobs require full application of the privilege framework known as
least privilege. Every deployment job should use cloud service accounts in which the
permissions control only the required capabilities for executing the specified application.
Each runners needs to have their permissions tightly restricted. Kubernetes together with
Docker serve as isolation methods for running jobs. GitLab implements protected runner
requirements for protected branches which keeps untrusted code from executing on
runtimes granting production-access.

 Include security scans: The system needs to include automated security testing as part of its
pipeline integration. GitLab enables template includes to activate its built-in SAST, DAST,
dependency scanning, container scanning and secret detection features. The execution of
SAST jobs across merge requests detects vulnerabilities during the early development phase
(SQL injection patterns and known vulnerable dependencies). The reports generated from
these jobs display security information in merge request tabs so GitLab enables security
reviews through normal development routines. The implementation of automated security
checks minimizes the possibility of vulnerabilities accessing the production environment
[10].

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

382

 Control access to CI/CD and environments: Take full advantage of GitLab permission
structures. The .gitlab-ci.yml requires merge code approvals as a safety measure to review
pipeline changes because its code nature leaves the opportunity for malicious edits to harm
the system. Fundamental branches should only be accessible to dependable personnel
through the merge-to-production process. The GitLab Protected Environment feature
provides a mechanism that controls which users can initiate deployments to specific
environments. You protect the “production” environment through the restricted
permissions feature which enables Developer and Maintainer role users to execute jobs.

 Audit and monitor the pipeline: Turn on pipeline logging features while conducting usage
tracking. The GitLab system offers a way to track events through its audit log while it is
essential to monitor pipeline execution especially for production runs. Log management
systems and Security Information and Event Management solutions often receive
notifications from organizations to help detect security events. The sudden occurrence of a
pipeline at an irregular time which deploys an untracked version must act as a warning
sign. The CI environment should be updated to prevent attackers from exploiting old
vulnerabilities in the CI images through regular dependency and base image review
procedures.

 Secure the supply chain: Software supply chain security has become vital since CI/CD
manages software releases. The best protection methods involve dependency trust
verification through checksums signatures as well as dependency proxy caching with
GitLab Dependency Proxy systems to protect from network attacks. GitLab provides
integration options with signing tools to enable users to sign container images and binaries
during pipeline execution as well as verify deployment signatures. The deployment of
artifacts must exactly match their built and tested versions.

 Isolation between jobs and projects: While operating multiple projects from shared
runners you must know that job containerization creates isolation boundaries though these
boundaries do not prevent all attacks. Kubernetes executor configuration allows you to run
each job inside a separate isolated pod on the runners. Many secure applications need
project-specific dedicated runners which eliminate any risk of project interference especially
when performing CI operations for untrusted open-source repositories. The practice of
using shared CI pipelines for cryptomining incidents has been observed across industries so
set concurrency limits and implement project usage quotas to avoid this threat (GitLab SaaS
includes built-in CI minutes quotas).

 Compliance and traceability: Configure pipelines to secure necessary information logging
for compliance purposes within finance sector and healthcare industry. The Pipeline
Compliance function from GitLab (operational only in Ultimate tier) enables system-wide
job requirements across all pipelines within a group thus mandating license scans and
deploy approvals for every project. Automated evidence generation (reports and logs)
should be established to keep artifacts of deploy logs as well as test results for auditing
needs.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

383

The application of these security procedures leads to substantial reduction of automated
pipeline failure or breach risks for business enterprises [10]. DevSecOps refers to CI/CD
security but the main principle directs security integration into the pipeline and protects the
pipeline components.

Scalability and performance best practices:

 Efficient pipeline design: The pipeline duration becomes shorter by performing jobs
simultaneously whenever it is feasible. The execution of jobs as one consecutive line reduces
the amount of feedback you receive. Jobs that operate independently should be executed
simultaneously since GitLab will automatically perform this task for all jobs located in the
same stage. A DAG can start later phase jobs earlier by using the needs: keyword even
when evaluation of the full stage is not required. A delayed integration test should not slow
down the starting time of your packaging job since both jobs test different sets of items.

 Caching and artifacts: The CI cache should be used to eliminate repetitive work tasks. The
procedure of caching node_modules during the build phase enables test stage modules to
work without needing additional reinstallations. The Maven .m2 repository can be stored as
cache for Java build projects. The transfer overhead of pipelines can be reduced by
restricting artifact transfer only to essential items since big artifacts slow down pipeline
execution phases. Periodic cache clearing is essential together with relevant change-based
keying that includes package-lock.json hash to maintain consistency.

 Right-size your runners: Runners must receive resources that match the requirements of
their handled jobs. Build heavy integration tests through dedicated machines or
automatically scaling virtual machines with ample capacity which avoids slow job
execution. GitLab enables dynamic runner fleet adjustments through Kubernetes
autoscaling and cloud auto-scaling features which offers great scalability for environments
with numerous developers performing code pushes. The automation system should
optimize between performance and cost parameters by having a scale down process after
idle periods (example).

 Pipeline as Code best practices: The .gitlab-ci.yml should remain DRY through proper
duplicate code extraction. YAML anchors/aliases combined with the extends: keyword
allow you to avoid duplicate job definitions. A central CI template should reside in an
include file which contains the definitions for common jobs such as standard test jobs and
standard security scans for multiple project inclusion. Project maintenance remains simple
and all projects benefit from uniformity through this approach.

 Monitoring pipeline performance: You should monitor average pipeline duration together
with success rate and queue time information which represents how long jobs must wait for
a runner. The addition of new runners should be implemented when queue times become
excessive. Examine the jobs that cause pipeline durations to increase because tests might
need optimization or division. The pipeline analytics feature of GitLab is available whereas
users get the option to export data to external monitoring applications.

 Incremental deployments and rollbacks: Zero-downtime strategies which will be explained

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

384

in detail are the recommended approach for deploy stages since they minimize impact. The
process of reverting should be straightforward in which deploy a previous version
automatically if problems arise during production. Previous production artifacts should be
retained or version tagging should be used for direct version deployments. The GitLab
environments view enables users to swiftly recover from issues when they can re-execute
previous job artifacts through settings activation.

 Avoiding anti-patterns: One of the main challenges that occurs within CI pipelines emerges
when jobs or scripts attempt to cover too many tasks. To achieve parallelism and improved
clarity the process should be divided into multiple distinct jobs or stages. Oversimplifying
CI pipelines by adding excessive complexity or conditionals should be avoided because the
first goal should aim for immediate feedback after every commit while adding complexity
only if necessary for exceptional cases. Manual intervention should be limited to actual
approvals and approval decision processes only due to its impact on automation benefits.
Automation of testing and staging deployments should remain as the default approach
while manual interventions should only appear during production release requirements
mandated by policy.

 Regular maintenance: CI pipelines receive the same advantages from code refactoring
efforts that application code does. Regular project evolution analysis should include three
ongoing tasks: removal of retired service jobs from the pipeline, stage updates for added
workflow steps and periodic upgrades of base images to enjoy CI environment security and
performance improvements.

Large organizations maintain fast and reliable pipeline performance through these practices
when the codebase and team grows.

Deployment strategy best practices:
The decision to select a deployment strategy during automatic deployment regulates how well
reliability stands with delivery speed and system impact on users. Blue-green and canary and
rolling deployments make up the main strategies available. This table outlines the operation
and advantages and disadvantages of the deployment strategies as well as all-at-once
deployment.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

385

Table 2: Deployment strategies for automated deployments.

Enterprise organizations commonly select both blue-green and canary approaches for
continuous delivery purposes. The blue-green deployment methodology has a straightforward
backup strategy that maintains the previous version ready for use. This makes it ideal for
delivering major version updates as well as upgrading stateful systems with difficult partial
upgrade requirements. Canary enables streamlined delivery of incremental updates because
several SaaS organizations distribute changes to 1% of customers first followed by 10% later
before reaching 100% within short timeframes while using monitoring to detect issues.

When deployment automation tools perform updates they adopt the rolling strategy through
default functions like Kubernetes Deployment which successively establishes new pods

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

386

alongside retiring old pods. This deployment model functions well as the default because it
operates with one extra capacity to accommodate both active versions. Prior to starting rolling
deployments verify your application maintains compatibility with previous and next versions
during the entire update duration. During version N and N+1 database deployment it is
essential that schema modifications function with both versions until roll completion to prevent
errors.

Implementing these in GitLab CI: The storage system within GitLab leaves strategy selection
up to developers yet requires proper design of deploy jobs.

 The procedure for blue-green deployment may consist of a job that deploys to a “green”
environment followed by another task either flipping routers or updating DNS entries. The
system could integrate a smoke test verification feature to evaluate the green environment
before the flip operation.

 The implementation of canary requires integration between your load balancer or service
mesh utilizing Kubernetes annotations or AWS ALB API calls to increase traffic weight to
the new version. A feature flag service enables features gradually by activating them across
different segments of the system.

 When operating with Kubernetes the new Deployment spec can initiate a rolling update
through the system automatically. The script performs a single server operation when
dealing with VM-based deployments.

Best practice: Your system needs a deployment strategy which you should then automate
within the pipeline. System monitoring together with automatic rollback mechanisms should be
incorporated whenever possible. Additional tools such as Argo Rollouts, Spinnaker and
Kubernetes Operators allow users to automate the process of canary analysis while triggering
rollbacks whenever specific metrics reach set thresholds. The deploy job in GitLab functions as
an integration with health checks through the system reporting back OK status or by using a
distinct job for post-deployment verification. The script must first execute a new version
deployment while it must monitor service health for X minutes. When health becomes poor you
should use kubectl rollout undo or deploy the previous image tag through deployment while
simultaneously marking the job as failed. Enterprise CI/CD needs this kind of resilient design
to ensure bad releases do not persist in the system.

Additional tips:

 Future flag features supplement risky code changes by allowing default off deployments
which you activate separately apart from deployment procedures (this method enhances the
CI pipeline through independent code deployment timing from business scheduling).

 Runbooks along with automated pipeline jobs should be maintained as documented
procedures for deployment and rollback operations even though automation exists. With its
environments view feature GitLab enables users to do fast redeployments of previous
versions from saved artifacts when available while implementing a retention policy for
successful artifacts which should extend to the last N builds to secure emergency

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

387

deployment options.

Organizations achieve automated and reliable and quickly deploying CI/CD pipelines when
they execute best practices. Well-designed enterprise CI/CD pipelines enable developers to
merge with confidence because the pipelines combine tests with quality control measures which
ensure quick production delivery when everything checks out properly as well as
implementing safeguards for unexpected failures.

VI. CASE STUDY
Fatal real-world applications of GitLab CI/CD within large organizations will be analyzed
through case studies from financial services and e-commerce and healthcare sectors. The cases
detail organizational difficulties while examining how GitLab was used for CI/CD deployment
along with achieved results and gained knowledge.

Case Study 1: Financial Industry – Goldman Sachs (Investment Banking): As a global
financial institution Goldman Sachs performed a workflow transformation by building a single
DevOps platform based on GitLab. The teams at Goldman Sachs previously operated with
mixed tool combinations including their own created CI system. The fragmented toolchain
between different developer tools restricted both team productivity rates and deployment
collaborations [5].

The GitLab migration enabled Goldman Sachs to boost its development productivity by
remarkable measures. Some Goldman Sachs teams documented at least 1,000+ automated CI
pipeline builds during daily operations for their active feature branches according to customer
feedback from GitLab. The single-location integration of GitLab allowed their source control to
merge seamlessly with code review and CI and CD functions thereby removing all obstacles
that stemmed from tool and process confusion. The developers could start new merge requests
which triggered automatic execution of .gitlab-ci.yml defined CI pipeline tests and analysis
tasks. Following integration the system would enable rapid production deployments that took
only minutes [5].

The primary advantage that Goldman obtained through the new system was heightened release
speed capabilities. The GitLab CI/CD function enabled critical internal platform deployment
from one to two weeks to just a few minutes in production time. The deployment pipeline
functioned through combination methods of feature flags alongside incremental deployments
and so each commit did not necessarily result in user-facing changes yet the codebase remained
in deployable state continually. The pipeline at Goldman included application building tasks
and running automated tests and security checks that led to cloud-based deployment. The
automated gates implemented by the pipeline allowed multiple development teams to deploy
their code to production within 24 hours after making a commit [5].

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

388

The centralized platform provided Goldman's leadership with superior monitoring of their full
software development process. The executives could detect slowdowns in the testing phase of
CI by which teams performed slower and take actions to resolve the issues. Engineers expressed
higher satisfaction with their work by preferring a single modern tool (GitLab) instead of
dealing with multiple software solutions which shortened the time needed to train new team
members because they needed to understand only one system.

Lessons learned from Goldman Sachs’s case include:

 Unified CI/CD reduces complexity: GitLab's replacement of diverse CI servers and scripts
cut down both maintenance complexity and integration failure rates.

 Empowering developers yields speed: Team members received the ability to execute
pipelines and deploy their applications independently through proper safeguards which led
to higher deployment speeds without compromising quality standards.

 Importance of culture: A collaborative culture at Goldman Sachs produced with the new
technology as one of its key elements. Engaging enthusiasm among engineers about this
new platform enabled them to drive both expansion of user adoption and ongoing platform
development.

 Scaling CI/CD: GitLab CI/CD demonstrated scalability capability when deployed at the
level of thousands of developers and builds through an appropriate runner infrastructure
implementation. Product optimization such as implementing high-performance self-
managed runners combined with pipeline work optimization became necessary to process
increased workload.

Case Study 2: E-commerce Industry – Veepee (Online Retail): Veepee (formerly Vente-Privee)
functions as a leading e-commerce enterprise which serves the European markets through flash
sales operations. The use of slow and infrequent releases at CI/CD created difficulties in market
response for their organization. Each team employed its different toolsets leading to prolonged
deployment cycles lasting around four days because the process demanded significant manual
coordination and numerous steps. Mandatory following of the standard deployment process
barred teams from fast production delivery outside emergency situations [6].

Veepee selected GitLab as its standard platform for both code version control and CI/CD
functionality to replace their old development process. Veepee introduced a new pipeline along
with the “InnerSource” philosophy which enabled team members to collaborate on code and
deployment templates through automated build-test-deployment automation. The integration
of GitLab CI pipeline with canary releases and automated blue-green deployments allowed
them to achieve zero downtime while reducing risks. SRE team members at Veepee built
standard CI/CD templates for linters and tests and deployment jobs to Nomad and Kubernetes
clusters allowing application teams to avoid rebuilding framework elements for each service [6].
The deployment process at Veepee transformed from a time-consuming duration of 4 days to
just 4 minutes under autonomous deployment conditions. According to Antoine Millet (Head of
IT Ops at Veepee) the rapid deployment of the past was challenging because numerous

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

389

employees needed involvement but Veepee now enables click-based deployment without
human intervention during regular processes. The templates of their system enable blue-green
deployments through automated processes to build new instances (green) followed by testing
and traffic switching before deactivating old instances (blue) while giving users options to
perform critical change canary executions. The pipeline or monitoring system at Veepee stops
deployments or rolls them back in case issues emerge after release because the platform proved
free of problems in three years post-adoption [6].

Additional outcomes for Veepee:

 High availability: When they deployed faster and made quicker deployments they
achieved 99.98% service availability because of reduced downtime periods. The system
operates just within minutes so it helps to repair issues and boost existing capabilities
swiftly.

 Developer autonomy: Each product team currently maintains full authority over their
CI/CD system. New developers at GitLab can make pipeline suggestions through their easy
YAML pipelines and shared templates. The company gained operational independence only
after spending roughly twelve months learning to adopt this new work methodology. The
team self-deployment capabilities allow personnel to release code promptly leading to
enhanced creativity.

 Cultural shift: After implementing GitLab CI/CD operations the company developed a
new work culture based on transparency and collaborative practices. Every definition of
pipeline exists openly for viewing and all project outcomes become collective organizational
knowledge. Commitment to the implementation of GitLab enabled Veepee to connect
operations teams with development teams while creating a management tool called
DevHub which provides complete development performance insight and promotes
standardized best practices across teams.

 Continuous improvement: The visible versioned system at Veepee enables teams to
develop their pipelines through continual improvements that include new quality checks
along with process optimizations for better efficiency.

A complete transition from rare manual releases to automated continuous delivery shows
Veepee's successful case. The implementation includes pipeline templating as a best practice for
practice propagation at scale and blue-green/canary deployment strategies to enable fast and
safe deployments.

Case Study 3: Healthcare Industry – Telus Health (Healthcare IT): Medical institutions
navigate through complex HIPAA rules while dealing with outmoded slow software
development practices which heavily depend on manual tasks. The Canadian healthcare IT
provider Telus Health struggled to develop software updates because their process moved
slowly. The task of creating test environments for healthcare applications lasted a long period of
eight weeks because manual methods combined with restricted infrastructure resources. The
long cycle length prevented important medical features and essential tools from reaching

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

390

healthcare providers and medical practitioners in a timely manner [7].
Telus Health achieved a workflow upgrade through partnership with a consulting firm that
implemented GitLab along AWS cloud infrastructure for CI/CD development using the
Amazon Web Services platform. The core goal of this initiative relied on Infrastructure as Code
(IaC) practices for automation of environment provisioning and application deployment using
Terraform as the main tool [7].

The critical steps undertaken included:

 Standardization of CI/CD Workflows: All development teams adopted one unified CI/CD
pipeline template through which they substituted former disjointed and irregular
deployment procedures. The template standardized deployment processes making it
possible for teams to maintain uniformity throughout all practices.

 Automated Environment Provisioning: Through AWS capabilities the teams executed
automated test environment provisioning that worked via GitLab pipeline jobs. The
implementation resulted in a transformation of provisioning durations from weeks to
minutes or even hours or less.

 Deployment Automation: GitLab CI/CD runners enabled automated deployment
processes that provided consistent delivery of products between development labs and
testing areas and the production environment.

These modernization initiatives produced substantial changes which altered every system
operation. Test environment creation became faster which enabled developers to validate new
features at production speed early in their development phase. The deployment method which
used to consume up to two months duration rapidly transitioned into a system capable of
instant service delivery thereby eliminating major implementation delays.

The automated deployment procedures delivered both better reliability and maintained greater
compliance standards. The standardized deployment method maintained identical
configuration parameters such as data encryption standards and access restrictions throughout
all platforms so regulatory standards became automatic [7].

The Telus Health case provides essential findings about how automation delivers improved
agility to regulated industries. Infrastructures as Code together with automated CI/CD
pipelines led Telus Health to shift its operations from manual initiatives to practice DevOps
principles. The regular collaboration of developers and QA and operations teams occurred
following their trust in automated systems which resulted in self-service testing with
accelerated software releases [7].

Healthcare organizations demonstrate through this case that well-designed continuous delivery
procedures help create rapid, compliant and reliable software updates which leads to direct
enhancements in patient care services [7].

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

391

The case studies involving a global bank and an e-commerce leader and a healthcare IT
provider demonstrate that companies can adapt GitLab CI/CD pipelines to suit their enterprise
needs while achieving faster deployments and higher quality processes. The success of each
implementation rested on both GitLab's capabilities and adherence to standard practices
associated with process standardization and thorough automation and continuous pipeline
improvement efforts within a culture of continuous development. Each of these business
settings produced remarkable outcomes such as Goldman Sachs reaching thousands of daily
builds and Veepee achieving four-minute automated releases with zero system disruptions
followed by Telus Health completing provisioning in reduced time from eight weeks to a few
hours. CIOs and developers should adopt CI/CD with GitLab for their enterprises based on
these demonstrated practical achievements.

VII. CHALLENGES AND SOLUTIONS
Implementing CI/CD pipelines within large organizations includes various unavoidable
hurdles. Organizations encounter three main barriers that include technological problems and
process-related challenges and internal resistance. Multiple CI/CD implementation challenges
in enterprises can be addressed through the following strategies as discussed below.

Challenge 1: Organizational and cultural resistance: The implementation of CI/CD systems
demands modifications to the existing workflows between teams. Development teams
frequently operate in independent structures in conventional enterprises before passing work
through manual transfer points between development and QA and to operations. Team
members can doubt automated deployment safety while being concerned that CI/CD could
replace workers or alter established operational procedures. Companies operating with
traditional yearly and quarterly release schedules may display caution towards too many
frequent releases.

Solution: Organizations should support a DevOps culture which focuses on delivery
responsibility combined with team-led collaboration. You must achieve full agreement starting
from the top level down through your organization by describing both quantitative and
qualitative achievements (such as how CI/CD minimizes errors and shortens delivery times).
Organizations typically launch their CI/CD adoption through an initial trial on new
microservices or inactive mission programs before leveraging this proof to spread adoption
through the organization. The shortage of necessary skills requires team-based training that
involves GitLab CI instruction and pipeline writing and infrastructure as code administration
methods to build team member comfort with the new workflow. Operations and security
personnel need involvement from the beginning so CI/CD demonstrates its ability to improve
control by integrating mandatory checks and audit functions within the workflow. Team
members experience increasing trust in automating their work processes because they receive
quicker feedback and witness reduced emergency late-warehouse campaigns. Organizations
referenced in the case studies document that developers and operations personnel eventually

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

392

endorse the extension of CI/CD systems because they experience the resulting advantages.

Challenge 2: Legacy systems and complexity of integration: Businesses face challenges when
trying to automate legacy applications along with databases and mainframe systems. These
systems typically lack automated testing capabilities and typically demand manual deployment
procedures with manual steps in the workflow (which were previously done by hand) that need
execution. Making use of these components within a current CI/CD pipeline represents a
challenging task. Organization-wide CI/CD efforts become complicated because companies use
different tools such as Jenkins and TeamCity along with multiple programming languages
which prevents the creation of a centralized platform.

Solution: Tackle legacy integration incrementally. The initial step involves automation of all
possible processes linked to the legacy system – even if complete auto-deployment is not
feasible you can automate package generation then execute manual input for final deployment
while recording results in the pipeline for clear monitoring. System experts should assist in
turning manual procedures into automated scripts or services through time-based
development. Using GitLab CI/CD as one unified platform helps by offering an organized
method to handle multiple technological operations. The deployment tools and test suites that
use legacy methods can connect through GitLab CI while maintaining centralized recording and
monitoring of their output and status. The implementation of APIs around legacy processes
combined with robotic process automation for interfaces that cannot be automated serves as
temporary solutions. Decoupling represents one approach that aims to extract manageable
sections of the system (such as creating microservice front-ends from legacy databases). This
action facilitates CI/CD implementation on those separate components as the legacy bottleneck
area shrinks over time.

Challenge 3: Ensuring quality and managing pipeline failures: Teams face numerous pipeline
failures while setting up their CI/CD system because tests quickly break or infrastructure
shows inconsistencies or job configurations are faulty. The test outcomes which succeed locally
do not guarantee stability in the CI environment. Developers tend to ignore pipeline warnings
after their trust in the tool diminishes because they think errors occur without valid cause. The
specificity of a fast deployment pipeline enables problems to pass through to users before
engineers have time to perform complete undergoing of testing needs or quality control checks.

Solution: Devote funds to achieve strong automated testing alongside reliable pipeline systems.
The practice of improving test stability and broadening coverage needs proper time allocation
from the development team. Classify unstable tests as non-blocking by using allow_failure: true
parameter but treat them as important issues to resolve soon. As a temporary approach to
manage known flaky tests developers can employ test retry logic in CI according to GitLab
specifications although their ultimate goal is to remediate the root causes of flakiness. Static
code analysis tools together with linting engines should integrate within quality checks at
several stages in your workflow to detect issues at early development phases. Organizations

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

393

usually implement the policy requiring pipelines to stay green until all important stages pass
before allowing any code merge through the practice "pipeline must be green." This rule
promotes discipline for pipeline maintenance. Sluggish pipelines must be split into multiple
parallel execution threads or receive faster processing equipment since developers will respond
promptly to tools generating results within 10 minutes rather than waiting 2 hours. The analysis
of failed pipeline trends through GitLab’s Pipeline Analytics or custom monitoring leads to
identifying recurring job failures and their underlying causes. Resource allocation and timeout
adjustment should be done when integration tests fail because of environment timeouts. The
systematic improvement of pipeline stability will shift team members from bypassing red
pipelines to treating them as immediate problems for resolution.

Challenge 4: Security and compliance requirements: Organizations operating in finance and
healthcare sectors must follow strict compliance regulations that require audit trails and
separation of duties and approvals among other things. There exists an issue when automatic
deployments completely bypass human review protocols which mandates manual staff
verification before production deployment. Time pressures on deployment cycles make security
teams fear they will get limited time for security examination. Security tools that are integrated
into pipelines have the ability to make deployments slower and generate analysis results that
typically exceed developer expertise [10].

Solution: Security-related functionality needs to become fundamental to your development
pipeline (as explained in Best Practices). To fulfill regulatory requirements the pipeline should
use manual approval jobs in production deployment but GitLab CI gives you permissioned
controls with manual "Play" approval to separate code from deployment functions (protecting
separation-of-duties requirements). The built-in audit logs and environment history features in
GitLab provide all necessary records to satisfy traceability requirements by tracking who
executed pipelines and which code versions they included for audit presentation. Compliance
officers become most helpful when they contribute to the pipeline design process by identifying
steps that need sign-off which can then become visible stages within the pipeline (a
"Compliance" stage may exist as a separate stage in some organizations for sign-off
requirements). The pipeline should include automatic SAST/DAST tools managed through
GitLab for conducting security tests which would trigger a pipeline failure when detecting
substantial vulnerabilities in order to stop insecure code from progressing. Security becomes an
integral automatic test using this approach which delivers better results than traditional post-
development security reviews. The interpretation of security scan results requires developer
training because a system allowing exceptions and waivers needs both process and the use of
GitLab’s security dashboard (for managing findings that teams decide to bypass). The
implementation of security-enhancing CI/CD practices that run automated scans and policy
enforcements enables organizations to show security teams that their concerns become
unnecessary.

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

394

VIII. CONCLUSION

Creating CI/CD pipelines through GitLab deployment automation represents a tested process
which delivers swift and excellent software deployments. Enterprises which put in place these
pipelines while making them part of their dev/test/release frameworks gain the ability to
deliver fast and reliable value to their users. Facing preliminary obstacles to develop the
pipelines and team synchronization and stakeholder commitment brings development
organizations speed and agility against competitors who implement manual traditional release
methods. Software delivery at will combined with complete confidence stands as a critical
factor in modern digital success. Software engineers can achieve continuous delivery of
innovation through the tools and framework which GitLab CI/CD delivers to DevOps
professionals and organizations at every level of the enterprise.

REFERENCES
1. GitLab – “What is CI/CD?”, Explains CI/CD concepts and importance of automation.

Referred from https://about.gitlab.com/topics/ci-cd/
2. Codacy Blog – “A Guide to DORA Metrics and Accelerating Software Delivery”

Summarizes DevOps research findings, e.g., elite performers deploy multiple times daily vs.
low performers every six month. Referred from https://blog.codacy.com/dora-metrics-to-
accelerate-software-
delivery#:~:text=The%20Accelerate%20State%20of%20DevOps,pushing%20for%20small%2
0deployments%20daily

3. InfoWorld – Paul Krill, “Most developers have adopted devops, survey says” (Apr 2024).
Reports results from State of CI/CD 2024, e.g., 83% of developers involved in DevOps,
~30% using CI/CD automation. Referred from
https://www.infoworld.com/article/2337172/most-developers-have-adopted-devops-
survey-says.html#:~:text=,of%20challenges%20related%20to%20interoperability

4. BrowserStack – “Difference between Jenkins vs GitLab CI” (Jun 2023). Discusses Jenkins’
plugin-heavy model vs GitLab’s integrated model; notes Jenkins flexibility but lack of built-
in project management and support. referred from
https://www.browserstack.com/guide/jenkins-vs-
gitlab#:~:text=,their%20advanced%20infrastructure%20and%20features

5. GitLab Customer Case Study – “Goldman Sachs” (about.gitlab.com/customers/goldman-
sachs). Describes Goldman’s adoption of GitLab: 1,000+ CI builds a day, on-demand
deployments, release cycle from weeks to minute. referred from
https://about.gitlab.com/customers/goldman-sachs/.

6. GitLab Customer Case Study – “Veepee” (about.gitlab.com/customers/veepee). Details
how Veepee achieved 4-minute fully automated deployments (down from 4 days) using
GitLab CI, with blue-green deploys and canary. Referred from
https://about.gitlab.com/customers/veepee/

International Journal of Core Engineering & Management

Volume-7, Issue-12, 2024 ISSN No: 2348-9510

395

7. Sourced Group Case Study – “Automation of CI/CD at TELUS Health” (2018). Explains
how Telus Health standardized CI/CD with AWS and automated env provisioning, cutting
test environment setup from 8 weeks to on-demand referred from
https://www.sourcedgroup.com/resources/case-study/automation-of-ci-cd-workflow-
using-devops-principles-at-telus-
health/#:~:text=TELUS%20Health%E2%80%99s%20software%20platform%20supports,depl
oy%20a%20new%20test%20environment

8. Unleash Blog – “Comparing deployment strategies: Canary, blue-green, and rolling” (Apr
2023). Outlines these deployment methods with pros/cons. referred from
https://www.getunleash.io/blog/comparing-deployment-strategies-canary-blue-green-
and-rolling

9. GitLab Blog – Jackie Porter, “Beyond source code management: 1 billion pipelines of CI/CD
innovation” (Oct 2023). Highlights GitLab’s CI/CD evolution and AI integration Code
Suggestions, etc. referred from https://about.gitlab.com/blog/2023/10/04/one-billion-
pipelines-cicd/

10. SentinelOne – “GitLab CI/CD Security: Risks & Best Practices” (Nov 2024). Emphasizes
need to secure pipelines, integrate automated testing, access controls, and data protection in
CI/CD. Referred from https://www.sentinelone.com/cybersecurity-101/cloud-
security/gitlab-ci-cd-security/#what-is-gitlab-ci-cd-security

11. Medium – Bitrock, “A Look at CI/CD Trends in 2024” (2024). Discusses industry trends like
tool convergence, mentions how GitLab’s CI/CD capabilities evolved to include security
scanning and deployment metric. referred from https://medium.com/@BitrockIT/a-look-
at-ci-cd-trends-in-2024-
ae251aadd08a#:~:text=GitLab%20is%20a%20complete%20DevOps,coding%20to%20testing
%20and%20deployment

