

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

176

COMPARATIVE ANALYSIS OF STATE MANAGEMENT APPROACHES FOR
SERVER-SIDE RENDERED ANGULAR APPLICATIONS

Sri Rama Chandra Charan Teja Tadi

Software Developer
Raven Software Solutions Inc.

charanteja.tadi@gmail.com
West Des Moines, Iowa, USA.

Abstract

The state management in server-side rendered (SSR) Angular applications presents challenges and
opportunities that affect application performance, maintainability, and end-user experience. This
paper conducts a comparative analysis of various state management approaches relevant to SSR
in Angular, such as the use of services, NgRx, and Akita. By critical analysis, the paper pinpoints
the benefits and trade-offs of applying each method based on scalability, integration simplicity,
and responsiveness. The research also discusses the best methods of using these state management
solutions, focusing on the need for adaptive methods withstanding changing application demands.
Based on performance indicators, the research offers worthwhile insights for choosing the most
suitable state management strategy to obtain maximum performance in SSR contexts.

Index Terms: State Management, Angular, Server-Side Rendering (SSR), Predictive Analytics,
Performance Optimization, User Experience.

I. INTRODUCTION
The advent of web applications has revolutionized software development significantly, with
server-side rendering (SSR) offering better performance and usability. Angular applications have,
in turn, adopted SSR to mitigate issues related to client-side rendering, including initial load time
and search engine optimization. In SSR designs, server-side pre-rendering of pages involves
sending fully rendered HTML to the client, a strategy weighing the advantages of dynamic content
against the need for speed and efficiency. Several state management strategies well adapted to
server-side rendered Angular applications have been investigated, comparing performance,
usability, and scalability in the context of SSR.
Being one of the widely used JavaScript frameworks, Angular is used to build interactive single-
page applications (SPAs) but introduces complexity in managing state when it comes to server-
rendered environments. State management is essential in such an environment to give a smooth
user experience and obtain maximum resource utilization. State management strategies for server-
side environments have been discussed to concentrate on best practices and measures that result in
improved application performance and user satisfaction.
With the continued development of web technology, this work adds to the increasing number of
publications on SSR and Angular applications. Comparing various state management strategies -
ranging from conventional to contemporary reactive methods - their comparative advantages and
corresponding drawbacks are highlighted, offering an insight beneficial to developers and
researchers alike.

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

177

A. Background and Motivation
The web development landscape has been greatly influenced by recent frameworks like Angular,
which facilitate the development of complex SPAs that favor user interactivity and participation.
Nonetheless, with more applications, performance issues become more visible, especially with
regard to application state management on the server side. It was found that performance is
largely lost due to ill-advised architectural decisions and poor state management strategies in
Angular apps [3].
SSR solutions have been recognized as a viable solution to such problems, given that pre-rendering
of HTML may result in faster loading times [4]. Even though the advantages are there, this shift
from client-side rendering to SSR is not without difficulties, especially with regard to handling the
state between server and client interactions. This has resulted in a thorough review of current state
management strategies geared towards SSR settings, with the aim of determining efficient
methods that can eliminate state-bound performance bottlenecks.
In addition, the need to utilize innovative programming methods in order to optimize web
application development has been highlighted by studies [2].
Understanding the complexities of state management is crucial since it has a direct influence on
application performance and user satisfaction. Seeking optimization in state management not only
responds to technical requirements but also complies with user experience requirements in an
increasingly competitive online environment, thus the necessity for this study.

B. Objectives of the Study
The primary objective of this study is to perform a comparative analysis of various state
management approaches for server-side rendered Angular applications. The strengths and
weaknesses of these methodologies are evaluated in terms of performance, scalability, and user
experience. Specifically, the objectives are as follows:

● Analyze Existing State Management Techniques: A thorough examination of conventional
and contemporary state management techniques is conducted. The study assesses how
these techniques cater to the unique demands of SSR within Angular applications, focusing
on attributes such as complexity, maintainability, and integration capabilities [3].

● Evaluate Performance Metrics: A systematic comparison of state management approaches
under real-world conditions is carried out using key performance metrics. Metrics such as
loading time, response time, and throughput are considered to provide a comprehensive
performance profile for each method under analysis [4].

● User Experience Assessment: The impact of state management on user experience is
assessed through empirical techniques such as surveys and usability testing. The influence
of different approaches on user satisfaction and application interaction is examined.

● Provide Recommendations: Based on the comparative analysis, actionable
recommendations for developers considering various state management strategies in SSR
Angular implementations are formulated. These best practices are informed by both
quantitative performance data and qualitative user feedback, ensuring a holistic approach
to optimization [4].

● Contribute to the Academic Dialogue: Insights from this research contribute to the
academic and professional discourse surrounding SSR and state management in web
applications, providing valuable information for future research and development in the
ever-evolving landscape of web technologies [2].

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

178

II. LITERATURE REVIEW
Research on server-side rendering (SSR) and state management solutions to Angular development
has largely expanded in line with the need for greater performance and best-optimized user
experiences within web development. Various research papers have investigated the pivotal role
SSR plays in the optimization of load times, general responsiveness, and search engine
optimization within Angular development. It has been discovered that SSR is beneficial in the
rendering of pre-rendered HTML content, which can be performance-improving for the initial
loading process of a web application [5].
Several research studies have concentrated on various facets of state management essential to SSR,
highlighting the nuances of asynchronous data loading and client-server ecosystem state
synchronization. The applicability of existing work in providing a comparative overview of
technology stacks is, however, arguably limited in that state management approaches for SSR are
not explicitly covered [7].
Meanwhile, programming technologies destined to be deployed in web applications' state
management solutions were put into view but without it necessarily being mentioned if they're
suitably relevant in SSR [6].
Research analyzing modern approaches has confirmed the presence of a state management
framework-correlated performance measurement in SSR systems. Comparative analysis has
defined how different web engineering approaches can be instrumental in having a significant
impact on the performance and optimization of state management, yielding knowledge regarding
effective pre-rendering techniques [5]. Effective state management is therefore implied to be the
key to the success of SSR based on data transition smoothness and, consequently, improving the
user experience.

A. Overview of Angular and SSR
Angular has asserted its status as a premier JavaScript framework for constructing modern web
applications due to its strong foundational architecture and efficient tooling systems. Built on
TypeScript, Angular's design facilitates the development of scalable single-page applications
(SPAs) characterized by modularity and responsiveness. Core features, such as dependency
injection and two-way data binding, provide developers with an organized model for application
growth. However, Angular's reliance on client-side rendering can lead to performance drawbacks,
particularly related to initial load time.
To combat these limitations, server-side rendering emerges as a complementary mechanism to
Angular's capabilities. By rendering HTML on the server, the framework reduces the time before
users can view meaningful content, presenting fully formed pages rather than blank canvases
waiting for JavaScript execution [5]. Furthermore, this method enhances search engine indexing
since content is available immediately, which is essential in improving visibility in search results.
Certain advantages of using appropriate programming technologies for enhancing SSR
implementations have been mentioned, although the context may not be strictly about integration
with state management [6].
Nevertheless, implementing SSR in Angular applications poses challenges regarding state
management fidelity. The need for a coherent synchronization strategy is critical to ensure that
both the server's and client’s views of the application are in alignment. Consequently, various state
management libraries and strategies have been proposed to maintain this consistency, allowing
developers to benefit fully from SSR’s performance improvements while ensuring that users enjoy
a seamless experience.

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

179

Figure 1: Angular JS Features [11]

B. Importance of State Management
State management is fundamental to the success of Angular applications, particularly in the
context of servers that render content dynamically. As modern applications grow in complexity,
the demand for robust state management solutions becomes increasingly pressing. Poorly
managed application states can lead to issues such as data inconsistency and application failures,
undermining the user experience and degrading performance. This is especially evident in SSR
scenarios, where timely and consistent data representation is crucial.
In SSR applications, the management of the state must address the need for real-time data
synchronization between the server and the client. Properly executed state management can
mitigate the risks of presenting outdated or inconsistent data, which is critical for maintaining user
trust and satisfaction. Various programming technologies have been identified to streamline state
management processes, but their scope appears broader than addressing state management
specifically for SSR [6].
Moreover, various design patterns, such as Flux architecture and Redux, provide frameworks for
managing application state efficiently. These architectures promote predictability in data flow,
making it easier for developers to scale applications and maintain clarity across complex
interactions. Effective state management strategies are pivotal for SSR configurations, enabling
developers to meet both performance benchmarks and user expectations [5].
In summary, state management emerges as a crucial element that directly impacts the integrity,
reliability, and responsiveness of server-side rendered Angular applications. As such,
understanding and implementing effective state management strategies is essential for delivering
consistent user experiences. By addressing the synchronization challenges inherent in SSR,
application fluidity and responsiveness can be significantly enhanced, solidifying the importance
of this critical area in modern web development.

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

180

III. STATE MANAGEMENT APPROACHES
The state management landscape of server-side rendered Angular applications is a wide range of
methodologies, each with specific qualities that suit the requirements of different developers and
the needs of different applications. There exists a necessity for adequate state management to
uphold user experience and application performance; it coordinates the state of the server and
client, thereby reducing discrepancies and latency.
Another common technique for state management is the utilization of centralized stores, in which
the state of an application is stored in a single, global location. This design makes it possible for all
parts of an application to utilize the same state, enabling simpler data flow and fewer state-
mismatch scenarios. Libraries like NgRx and Akita showcase this method with the utilization of
state transition management tools and uniform state updates. In addition, these libraries promote
the following principles that make applications scalable and maintainable.
Service-based state management is another method that uses services as intermediaries between
the components and state information. Data manipulation, retrieval, and persistence logic are
encapsulated by the services. Centralized control is avoided, while the application state
management is facilitated by this method, along with modularity and flexibility. There are pros
and cons of each of the methodologies that are taken into account and result in tailored
implementations best suited for specific contexts and purposes.
The challenge is to find the best practices that allow frictionless integration of state management in
server-side rendered setups in Angular applications. This means experimentation with multiple
techniques without trading off on the corresponding performance cost and SSR best practice
support [8].

A. Service-Based Management
Service-based management is used more and more in Angular applications to enable proper state
management in server-side rendered (SSR) scenarios. Service-based management is simply about
declaring services as intermediaries between application components and backend APIs. By
adopting the service-based pattern, API interaction and state management can be managed
centrally, resulting in a more structured code base and a more visible separation of concerns.
Perhaps the greatest benefit of service-based management is the way in which it optimizes data
access patterns. Services combine data from multiple sources, cache responses to avoid repeated
API calls, and handle complicated data streams. In SSR apps, this eliminates the overhead that gets
created when multiple components try to fetch data in parallel, resulting in a more efficient data
system and better performance. In addition, services are structured to preserve the state of the
application and thus enable synchronization among server-rendered material and client-driven
operations [9].
Additionally, service-based management facilitates modular development. Services may be
written, tested, and serviced individually. Encapsulation facilitates reuse within various modules
and applications, reducing development effort and increasing productivity. However one needs to
take good care in getting the correct logic into services in order to ensure proper asynchronous
data handling with an eye to the variation in the rendering behavior of client-side vs. server-side
applications.
Lastly, while organization and adaptability are promoted under service-based management, there
has to be careful designing to avoid it amounting to mismanaging states and, in turn, leading to
synchronization problems under SSR environments. Organizations need to, therefore, establish

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

181

trade-offs between service-based architecture and central store mechanisms for their Angular
applications [8].

B. NgRx Overview
NgRx is a full-fledged state management library for Angular applications following the Redux
pattern. It offers a comprehensive framework for application state management using reactive
programming concepts. NgRx is designed to implement a deterministic state management system
that simplifies sharing and managing the state among components, thereby enhancing
maintainability and testability in applications.
Effectively, NgRx enables a unidirectional data flow to make state changes under control. NgRx
has distinct components: actions, reducers, selectors, and effects, and each of these has a coherent
function. Actions represent changes to the state, reducers define how the state changes as a
consequence of actions, and selectors are employed for the reading of state data in the best possible
manner. Effects provide room for side effects such as API calls or communication with other
libraries outside, thus decoupling such behavior from the intrinsic state management features [9].
Figure 2 shows the NgRx state management life cycle and the interaction of its main elements,
such as actions, reducers, selectors, and effects.

Figure 2: NGRX State Management Life Cycle [12]

With server-side rendered Angular applications, NgRx provides an organized way to coordinate
the content produced by the server and client behavior. This comes to the forefront in that SSR
entails rendering the initial application state on the server prior to hydrating it on the client. NgRx
offers utilities that are easy to integrate into SSR pipelines so that the state can be persisted on both
the server and client consistently. Moreover, the observable nature of NgRx suits Angular's
reactive programming model quite well, facilitating a more responsive user interface.
However, the implementation of NgRx does demand a clear grasp of its paradigms. The intricacy
involved in applying Redux patterns can initially be a learning challenge, especially for developers
who are not familiar with reactive programming or state management principles. Nevertheless, for
teams seeking to develop scalable and maintainable applications, utilizing NgRx can yield
considerable long-term benefits, especially in large-scale systems where predictable state
management is crucial [9].

C. Akita Framework

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

182

Akita is another powerful state management library built specifically for Angular apps with
simplicity and usability in mind but without compromising on functionalities. Akita has a less
complex API than NgRx, hence appealing to developers who are looking for a simple yet potent
solution. Akita is optimally suited for applications where the additional complexity of Redux-like
state management is not needed.
One of the positives of Akita is that it supports store functionality where local and remote states
can be handled in a straightforward manner. Defining entities within the store itself encourages
cleanliness when it comes to structuring and managing the application state. Services and models
with data access and state logic are handled by Akita, and this results in more compact
modularization along with less boilerplate code compared to what other state management
methods can provide.
In server-side rendered applications, Akita's methodology is natively available to match the
demands of fluid data management since it makes the way data is queried and updated easier.
This kind of performance is essential in SSR applications, where the state needs to be maintained
consistently across server-rendered views and the client-side updates that follow. Akita's native
observables enable seamless changes in state updates in SSR scenarios.
Besides, Akita's lightweight design provides a flatter learning curve, which makes it ideal for
smaller projects or teams where rapid development cycles are necessary. With its ongoing
development, Akita's feature set is growing to incorporate more features that enhance developers'
ability to create responsive, scalable applications with an optimized state management approach.

Figure 3: State Management using Akita [13]

IV. COMPARATIVE ANALYSIS
Comparative analysis of state management strategies in Angular applications examines different
frameworks, such as NgRx, Akita, and service-based state management strategies, and their
advantages and disadvantages in managing application states. By comparative analysis, their
impact on real-world applications regarding performance, scalability, and development experience
becomes apparent.
NgRx, whose origin traces back to a Redux-inspired framework, is of vital importance to those
applications where maximum control of state handling is needed. Its structure allows it to handle
states in a deterministic manner, something that is quite essential in scenarios where intricate state
modifications are probable [2]. NgRx's core leverages observables through its dependency on RxJS,
providing support for the handling of asynchronous streams of data in a competent way. This

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

183

aspect benefits SSR apps as it facilitates seamless server-client transfer with good performance and
reduced latency gaps that are prone to adversely affect the users' experience.
Nonetheless, NgRx's structural rigidity and sometimes excessive setup may discourage its
application in less complex applications where the overhead may be too much compared to the
benefits. Excessive boilerplate code utilized may limit rapid iterations, particularly within agile
development scenarios.
Akita, on the contrary, proves useful in scenarios where deployment speed and flexibility are
paramount. Unlike NgRx, Akita contains less boilerplate, and states can be effortlessly defined and
easily implemented quickly in applications. This efficiency is particularly warranted when
development cycles need to be quick, allowing teams to respond to changing requirements or user
feedback quickly [1]. Akita's entity management supports managed state management and works
seamlessly into existing Angular apps. However, with increasing applications, discipline in
ensuring state consistency across components increases, and reliability is a concern with more
complex interactions.
Service-based management provides an architecturally loose solution that enables domain logic to
encapsulate in modular services. It promotes reusable services and can easily reduce development
complexity. However, the issue is how to facilitate efficient state synchronization among services
because inconsistencies will occur when different components rely on information handled by
encapsulated layers of services. Hence, strong mechanisms need to be put in place to ensure
consistency between server-side states and client updates, especially in high-interactivity-
demanding applications.
Therefore, although NgRx is a strong tool for complex state management situations because of its
systematic approach, Akita benefits from the best speed and convenience appropriate for smaller
projects or projects experiencing rapid development stages. Management through services can be
provided with modularity of flexibility to cater to dynamic applications but comes with a higher
degree of complexity in terms of ensuring state consistency.

A. Evaluation Criteria
Assessing the state management solutions for server-side Angular applications requires a
structured and compact approach that considers performance, usability, and flexibility. The
following are the most important assessment criteria for each solution:

1. Performance Criteria: Assessing responsiveness against different loads and measuring
factors such as initial load time and delay in user interactions is essential. Effective
performance optimizes user satisfaction and engagement.

2. Scalability: Proper systems of state management must not only accommodate today's
application size but also be resilient enough to enable future growth. Support for and
capacity to handle growing complexity and feature sets without diminishment is critical.

3. Usability by developers: Assessing how simple the framework is to develop and deploy is
crucial. Metrics of measurement include ease of access to documentation, volume of
community support available, and quality of developer experience.

4. Maintainability: The ability of the framework to support simple updates and tuning is
important. A low-maintenance framework decreases the possibility of technical debt
accumulation, which can paralyze future development.

5. Consistency Management Across Client-Server Interaction: For SSR cases, it is essential to
get a consistent application state when transitioning between server-rendered and client-

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

184

rendered pages. Seamless synchronization mechanisms enhance user experience by
removing inconsistencies.

6. Community and Ecosystem Support: Extensive community presence results in plenty of
shared resources, rapid problem-solving, and ongoing framework advancement. An
active ecosystem keeps the framework current with changing web standards.

B. Performance Metrics
The measurement of performance metrics is central to determining how efficient different state
management approaches in server-side rendered Angular applications are. Some of the most
important performance metrics are:

1. Initial Load Time: The measurement of the duration it takes to display useful content to the
user. Improving initial loads leads to improved user retention.

2. Time to Interaction (TTI): The Time it takes to make interaction feasible by a user after
initial content loading is done is important. Reduced TTI improves perceived speed and
usability.

3. Resource Utilization: Understanding memory use by various state management
frameworks dictates performance. An optimized framework reduces resource usage for a
more performance-centric experience.

4. User Interaction Response Time: Measuring user action to application response latency
gives insight into responsiveness. Brief response times enhance user interaction.

5. System Stability and Error Tracking: Error frequency and types caused by state
management implementations give insight into robustness. Lower error frequencies are
associated with more stable state management solutions.

6. Data Synchronization Latency: Data synchronization latency between the client and servers
must be reduced in SSR systems to provide decent performance. Low latency with highly
efficient frameworks provides a better user experience.

C. Key Findings
The study of state management trends for server-side rendered Angular applications has provided
basic insights into development practices and framework usage. The key findings are:

● NgRx's Strengths: Its rigid architecture leans towards complex state transitions. State
change predictability enhances code reliability and makes debugging easier but may make
small projects cumbersome [2].

● Akita's Fast Development Advantages: Akita's speed and simplicity of deployment are
enticing for teams that have to get development cycles to speed without being encumbered
by setup hassles. State management may be managed effectively with low friction, but
consistency should be recalled fervently in larger applications [1].

● Service-Based Management Flexibility: This pattern allows the rapid development of
applications through the modular usage of services. However, handling the persistent
state when numerous services share state logic is difficult, requiring disciplined design to
prevent issues.

● Other Performance Behaviors: Performance tests reveal that despite greater setup
overhead, NgRx mostly beats solutions such as Akita in a more complex context based on
the mature state management functionality. Quick startup performance, though, remains
Akita's domain for the most basic scenarios [1].

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

185

● Maintaining a Uniform State of Application Across Contexts: It is essential to sustain a
uniform application state when transitioning from server-side to client-side interaction.
Selecting frameworks with built-in synchronization mechanisms enhances the overall user
experience.

Figure 4: Comparison of NgRx vs. Akita Features

V. BEST PRACTICE RECOMMENDATIONS
For efficient state management of server-side rendered Angular applications, best practices that
improve performance, maintainability, and user experience should be adopted. According to the
literature available, including observations on AngularJS development, the following guidelines
offer a systematic approach:

● Assess Framework Appropriateness: The choice of a state management framework should
be made according to the particular needs of the application. It is important to understand
the strengths of frameworks like NgRx, Akita, or service-based management. NgRx is best
suited for applications with intricate state interactions and high predictability requirements
because of its organized nature. Akita is best suited for projects that need quick
development without too much boilerplate, whereas service-based management provides
flexibility for dynamic applications.

● Apply Consistent State Synchronization: Consistent application state between the server
and client is essential in server-side rendered applications. Frameworks must support
efficient synchronization mechanisms. For instance, NgRx has tools for side effect
management, which can help simplify updates. Through these capabilities, user interfaces
can be made to match the latest application state on both the server and client side.

● Maximize Performance with Lazy Loading and State Management Strategies: Performance
can be maximized, particularly under the paradigm of SSR, by implementing lazy loading
techniques in order to postpone loading content until required. Accompanied by state
management strategies such as state chunking, memory consumption can be reduced to

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

186

expedite initial loading. These types of techniques yield a better user experience,
particularly in bigger apps where performance rates are crucial.

● Highlight Error Handling and Recovery: Strong error handling is essential for state
management systems. Consistent strategies for tracking errors and handling them should
be in place. Embedding error handling directly in state management processes layers
ensures that state transition or API call failures do not critically impact user interactions.
This improves application resilience and user trust.

● Perform Thorough Testing: Ongoing testing of state management implementations is part
of ensuring application integrity. Unit tests for state-related logic, integration tests for
component interactions, and complete end-to-end tests need to be created to mimic actual
user scenarios. The investment in systematic testing not only identifies problems early but
also enforces stability as the application grows.

● Have Clear Documentation and Code Quality: Keeping code well-commented and clean
assures long-term maintainability. The documentation should consist of state management
approaches described, flow diagrams as needed, and easy-to-understand instructions for
subsequent developers. Implementing tools such as ESLint for code quality and readability
enhancements can limit technical debt, making the codebase easier to navigate [10].

● Leverage Community Expertise: Drawing on the community at large can offer insights.
Contributions to forums, discussions, and reading success stories or setbacks of others in
controlling state within Angular applications must be encouraged. Such interactions can
expose best practices and creative strategies that may not necessarily be self-evident from
the documentation.

● Stay Up-to-Date on Framework Changes: The world of technology is always changing,
particularly with frameworks such as Angular. Keeping up with updates, new features,
and best practices by reading the official Angular blog, participating in workshops, and
talking to thought leaders in the industry is essential. Ongoing education allows the most
recent developments to be utilized, resulting in improved application performance and
user experiences.

By incorporating these best practices in the development process, more effective state management
can be obtained, and as a result, user-friendly as well as sustainable server-side rendered Angular
applications can be created.

VI. CONCLUSION
In conclusion, research on server-side rendered Angular state management libraries presents the
key role of quality state management in achieving high-performance, user-focused web
applications, with state management libraries such as NgRx and Akita offering developers varied
tools and approaches based on project needs, each of which has its merits and demerits. Proper
testing of an application should not be underestimated; it is the cornerstone on which lies the most
solid software that best serves the needs of users and continues to serve changing needs.
Finally, selecting a state management strategy must be done carefully, taking into account the
particular application scenario, team skill, and ultimate project vision. With the use of the learning
acquired from this analysis, Angular applications can be developed to scale, perform well, and
remain responsive in order to realize the utmost user engagement and satisfaction with proper
state management playing a central role in modern web development.

International Journal of Core Engineering & Management

Volume-6, Issue-09, 2020 ISSN No: 2348-9510

187

REFERENCES
1. P. Vuorimaa, M. Laine, E. Litvinova, and D. Shestakov, "Leveraging declarative languages

in web application development," World Wide Web, vol. 19, no. 4, pp. 519–543, 2016.
[Online]. Available: https://doi.org/10.1007/s11280-015-0339-z

2. C. Short, "GrayStarServer: Server-side spectrum synthesis with a browser-based client-side
user interface," Publications of the Astronomical Society of the Pacific, vol. 128, no. 968, p.
104503, 2016. [Online]. Available: https://doi.org/10.1088/1538-3873/128/968/104503

3. M. Ramos, M. Valente, and R. Terra, "AngularJS performance: A survey study," IEEE
Software, vol. 35, no. 2, pp. 72–79, 2018. [Online]. Available:
https://doi.org/10.1109/ms.2017.265100610

4. Z. Xiao, C. Withana, A. Alsadoon, and A. Elchouemi, "A front-end user interface layer
framework for reactive web applications," American Journal of Applied Sciences, vol. 14,
no. 12, pp. 1081–1092, 2017. [Online]. Available:
https://doi.org/10.3844/ajassp.2017.1081.1092

5. K. Wakil and D. Jawawi, "Comparison between web engineering methods to develop multi
web applications," Journal of Software, vol. 12, no. 10, pp. 783–793, 2017. [Online].
Available: https://doi.org/10.17706/jsw.12.10.783-793

6. E. Nikulchev, D. Ilin, P. Kolyasnikov, and I. Zakharov, "Programming technologies for the
development of web-based platform for digital psychological tools," International Journal
of Advanced Computer Science and Applications, vol. 9, no. 8, pp. 1–7, 2018. [Online].
Available: https://doi.org/10.14569/ijacsa.2018.090806

7. J. Heredia and G. Sailema, "Comparative analysis for web applications based on REST
services: MEAN stack and Java EE stack," KnE Engineering, vol. 3, no. 9, pp. 82–94, 2018.
[Online]. Available: https://doi.org/10.18502/keg.v3i9.3647

8. J. Chou and C. Yang, "Obfuscated volume rendering," The Visual Computer, vol. 32, no. 12,
pp. 1593–1604, 2016. [Online]. Available: https://doi.org/10.1007/s00371-015-1143-6

9. S. Chen, U. R. Thaduri, and V. K. R. Ballamudi, "Front-end development in React: An
overview," Engineering International, vol. 7, no. 2, pp. 117–126, 2019. [Online]. Available:
https://doi.org/10.18034/ei.v7i2.662

10. E. Elrom, AngularJS, 1st ed. Berkeley, CA, USA: Apress, 2016, pp. 101–129. [Online].
Available: https://doi.org/10.1007/978-1-4842-2044-3_5

11. "Automation of Angular Apps: TechnoCast - Summer 2019," QASource, 2019. [Online].
Available: https://blog.qasource.com/automation-of-angular-apps-technocast-summer-
2019

12. "@ngrx/store," ngrx - Official Documentation. [Online]. Available:
https://ngrx.io/guide/store

13. "A reactive state management tailor-made for JS applications," Akita - Official
Documentation. [Online]. Available: https://opensource.salesforce.com/akita/

https://doi.org/10.1007/s11280-015-0339-z
https://doi.org/10.1088/1538-3873/128/968/104503
https://doi.org/10.1109/ms.2017.265100610
https://doi.org/10.3844/ajassp.2017.1081.1092
https://doi.org/10.17706/jsw.12.10.783-793
https://doi.org/10.14569/ijacsa.2018.090806
https://doi.org/10.18502/keg.v3i9.3647
https://doi.org/10.1007/s00371-015-1143-6
https://doi.org/10.18034/ei.v7i2.662
https://doi.org/10.1007/978-1-4842-2044-3_5
https://blog.qasource.com/automation-of-angular-apps-technocast-summer-2019
https://blog.qasource.com/automation-of-angular-apps-technocast-summer-2019
https://blog.qasource.com/automation-of-angular-apps-technocast-summer-2019
https://ngrx.io/guide/store
https://ngrx.io/guide/store
https://ngrx.io/guide/store
https://ngrx.io/guide/store
https://opensource.salesforce.com/akita/
https://opensource.salesforce.com/akita/
https://opensource.salesforce.com/akita/

