
 
International Journal of Core Engineering & Management 

Volume-7, Issue-11, 2024           ISSN No: 2348-9510 
 

270 

COMPARISON OF LOG STRUCTURED AND PAGE ORIENTED STORAGE 
ENGINES 

 
Arjun Reddy Lingala 

Dallas, USA 
arjunreddy.lingala@gmail.com 

 

 
Abstract 

 

The exponential growth of data-intensive applications has necessitated the development of highly 
optimized storage engines, with Log-Structured and Page-Oriented architectures emerging as 
dominant paradigms. This paper presents an in-depth comparative analysis of two predominant 
storage engine paradigms: Log-Structured Storage Engines and Page-Oriented Storage Engines. 
These two approaches differ fundamentally in data organization; write amplification, read 
efficiency, and suitability for various workloads. Log-structured storage engines, such as Log-
Structured Merge Trees, append data sequentially in an immutable log-based format, leveraging 
write-optimized structures to achieve high ingestion rates and improved disk utilization. This 
design enables efficient write operations but often incurs high read amplification due to frequent 
compaction [11] and merging processes. In contrast, page-oriented storage engines, such as B-Tree-
based architectures, organize data in fixed-size pages, allowing direct in-place updates. This 
structure supports efficient point lookups and range queries but suffers from write amplification 
due to frequent page-level modifications and associated I/O overhead. Log-Structured engines 
used by Log-Structured Merge-Trees (LSM-trees) [8] in systems like LevelDB [2] and RocksDB [1], 
optimize write throughput via sequential appends and immutable segments, while Page-Oriented 
engines, exemplified by B-tree-based systems such as InnoDB [3] and PostgreSQL [4], prioritize 
read efficiency and transactional consistency through in-place updates within fixed-size pages. 
This study systematically evaluates the performance characteristics of Log Structured and Page 
Oriented Storage engineers under various workload patterns, including write-intensive, read-
heavy, and mixed-use cases. Additionally, we explore the impact of storage media on the 
performance of both storage paradigms, revealing how underlying hardware influences engine 
efficiency 

Index Terms—Storage, Retrieval, Log Structured Storage Engine, Page Oriented Storage Engine, 
Compaction, Indexing, Memtable, SSTables 
 
 

I. INTRODUCTION 
As data-driven applications continue to grow in scale and complexity, the efficiency and scalability 
of database storage engines have become critical to overall system performance. Growth of data-
driven applications has placed unprecedented demands on storage engines to deliver optimal 
performance, scalability, and reliability. Central to this challenge are two competing architectural 
paradigms, Log-Structured Storage Engines and Page-Oriented Storage Engines, each designed to 
address distinct workload requirements. The choice of a storage engine directly impacts read and 
write operations, durability, and scalability, making it essential for database architects to select the 
right solution based on workload demands. Among the most widely adopted storage 
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architectures, Log-Structured Storage Engines and Page-OrientedStorage Engines offer distinct 
approaches to data management, each optimized for different operational needs. Log-structured 
storage engines prioritize write performance by appending data sequentially in an immutable log 
format. This design minimizes random I/O operations, making it well-suited for write-heavy 
applications such as time-series databases, real- time analytics, and large-scale logging systems. 
While Log Structured Engines efficiently handle high data ingestion rates, they introduce trade-
offs, including increased read and space amplification due to frequent compaction and garbage 
collection. Conversely, page-oriented storage engines organize data into fixed-size blocks (pages) 
and enable in-place up- dates. This architecture, commonly used in relational databases such as 
MySQL , PostgreSQL, and Microsoft SQL Server, is optimized for transactional workloads 
requiring efficient point lookups and range queries. Page Oriented Storage Engines ensure ACID 
compliance but often suffer from write amplification due to frequent page modifications and 
buffer management overhead. 
 
 

II. LOG STRUCTURED STORAGE OR LSM TREES 
Log-Structured Merge Tree (LSM-Tree) [8] is a write- optimized data structure widely used in 
modern storage engines, particularly in NoSQL databases, key value stores, and time series 
databases. Unlike traditional B-Trees, which support in-place updates, LSM-Trees follow a log-
structured design where incoming writes are first buffered in memory before being periodically 
flushed to disk. This approach optimizes write performance, reduces random I/O operations, and 
enhances scalability, making LSM-Trees an ideal choice for write-heavy workloads. At the core of 
an LSM-Tree is a multi-tiered structure composed of Memtable – a mutable, in-memory data 
structure where writes are initially stored, Sorted String Tables – immutable, disk-resident data 
structures that store sorted key-value pairs, created when the memtable reaches a threshold size 
and is flushed to disk, and compaction – a process that periodically merges smaller sorted-string 
tables into larger ones, removing obsolete data and reducing read amplification. Each log-
structured storage segment is a sequence of key-value pairs. These pairs appear in the order that 
they were written, and values later in the log take precedence over values for the same key earlier 
in the log. Apart from that, the order of key-value pairs in the file does not matter. Sequence of 
key-value pairs in segment files is sorted by key. Merging segments is simple and efficient, even if 
the files are bigger than the available memory. Theapproach is like the one used in the mergesort 
algorithm by starting reading the input files side by side, then look at the first key in each file, copy 
the lowest key to the output file, and repeat. This produces a new merged segment file, also sorted 
by key. When multiple segments contain the same key, we can keep the value from the most recent 
segment and discard the values in older segments. The construction and maintenance of SSTables 
is done in four steps. When a write comes in, add it to an in-memory balanced tree data structure 
and the in-memory tree is sometimes called a memtable. When the memtable gets bigger than a 
defined threshold, write it out to disk as an SSTable file. This can be done efficiently because the 
tree already maintains the key-value pairs sorted by key. The new SSTable file becomes the most 
recent segment of the database. While the SSTable is being written out to disk, writes can continue 
to a new memtable instance. In order to serve a read request, first try to find the key in the 
memtable, then in the most recent on-disk segment, then in the next-older segment, etc. From time 
to time, run a merging and compaction process [11] in the background to combine segment files 
and to discard overwritten or deleted values. With this approach, if the database crashes, the most 
recent writes which are in the memtable but not yet written out to disk are lost. In order to avoid 
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that problem, we can keep a separate log on disk to which every write is immediately appended, 

just like in the previous section. That log is not in sorted order, but that doesn’t matter, because its 
only purpose is to restore the memtable after a crash. Every time the memtable is written out to an 
SSTable, the corresponding log can be discarded. 
 
The LSM-tree algorithm can be slow when looking up keys that do not exist in the database. We 
have to check the memtable, then the segments all the way back to the oldest before we can be sure 
that the key does not exist. In order to optimize this kind of access, storage engines often use 
additional bloom filters. There are also different strategies to determine the order and timing of 
how SSTables are compacted and merged. The most common options are size- tiered and leveled 
compaction [11]. In size-tiered compaction, newer and smaller SSTables are successively merged 
into older and larger SSTables. In leveled compaction, the key range is split up into smaller 
SSTables and older data is moved into separate levels, which allows the compaction [11] to 
proceed more incrementally and use less disk space. Even though there are many subtleties, the 
basic idea of LSM trees, cascade of SSTables that are merged in the background are simple and 
effective. Even when the dataset is much bigger than the available memory it continues to work 
well. Since data is stored in sorted order, we can efficiently perform range queries, and because the 
disk writes are sequential the LSM tree can support remarkably high write throughput. 
 
 

III. PAGE ORIENTED OR B-TREES 
The most widely used indexing structure are Page Oriented or B-Trees. They remain the standard 
index implementation in almost all relational databases, and many non-relational databases use 
them too. Like SSTables, B-trees keep key-value pairs sorted by key, which allows efficient key- 
value look-ups and range queries, but they have a different design model. B-trees break the 
database down into fixed-size blocks or pages, traditionally 4 KB in size (sometimes bigger), and 
read or write one page at a time. This design corresponds more closely to the underlying 
hardware, as disks are also arranged in fixed-size blocks. Each page can be identified using an 
address or location, which allows one page to refer to another, similar to a pointer but on disk 
instead of in memory. One page is designated as the root of the B-tree and whenever we want to 
look up a key in the index, we start here. The page contains several keys and references to child 
pages. Each child is responsible for a continuous range of keys, and the keys between the 
references indicate where the boundaries between those ranges lie. The number of references to 
child pages in one page of the B-tree is called the branching factor. The branching factor depends 
on the amount of space required to store the page references and the range boundaries, but 
typically it is several hundred. If we want to update the value for an existing key in a B-tree, we 
search for the leaf page containing that key, change the value in that page, and write the page back 
to disk. If we want to add a new key, we need to find the page whose range encompasses the new 

key and add it to that page. If there isn’t enough free space in the page to accommodate the new 
key, it is split into two half-full pages, and the parent page is updated to account for the new sub- 
division of key ranges. This algorithm ensures that the tree remains balanced and a B-tree with n 
keys always has a depth of O(log n). Most databases can fit into a B-tree that is three or four levels 
deep. 

The basic underlying write operation of a B-tree is to overwrite a page on disk with new data. It is 
assumed that the overwrite does not change the location of the page; i.e., all references to that page 
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remain intact when the page is overwritten. We can think of overwriting a page on disk as an 
actual hardware operation. On a magnetic hard drive, this means moving the disk head to the 
right place, waiting for the right position on the spinning platter to come around, and then 
overwriting the appropriate sector with new data. On SSDs, what happens is somewhat more 
complicated, due to the fact that an SSD must erase and rewrite fairly large blocks of a storage chip 
at a time. Moreover, some operations require several different pages to be overwritten. For 
example, if we split a page because an insertion caused it to be overfull, we need to write the two 
pages that were split, and also overwrite their parent page to update the references to the two 
child pages. This is a dangerous operation, because if the database crashes after only some of the 
pages have been written, you end up with a corrupted index. In order to make the database 
resilient to crashes, it is common for B-tree implementations to include an additional data structure 
on disk: a write-ahead log. This is an append-only file to which every B-tree modification must be 
written before it can be applied to the pages of the tree itself. When the database comes back up 
after a crash, this log is used to restore the B-tree back to a consistent state. Instead of overwriting 
pagesand maintaining a WAL for crash recovery, some databases use a copy-on-write scheme. A 
modified page is written to a different location, and a new version of the parent pages in the tree is 
created, pointing at the new location. We can save space in pages by not storing the entire key, but 
abbreviating it. Especially in pages on the interior of the tree, keys only need to provide enough 
information to act as boundaries between key ranges. Packing more keys into a page allows the 
tree to have a higher branching factor, and thus fewer levels. In general, pages can be positioned 
anywhere on disk, there is nothing requiring pages with nearby key ranges to be nearby on disk. If 
a query needs to scan over a large part of the key range in sorted order, that page-by-page layout 
can be inefficient, because a disk seek may be required for every page that is read. Many B- tree 
implementations therefore try to lay out the tree so that leaf pages appear in sequential order on 

disk. However, it’s difficult to maintain that order as the tree grows. 
 
 

IV. LSM TREES VS B-TREES 
Even though B-tree implementations are generally more mature than LSM-tree implementations, 
LSM-trees are also interesting due to their performance characteristics. As a rule of thumb, LSM-
trees are typically faster for writes, whereas B-trees are thought to be faster for reads. Reads are 
typically slower on LSM-trees because they have to check several different data structures and 
SSTables at different stages of compaction. A B-tree index must write every piece of data at least 
twice once to the write-ahead log, and once to the tree page itself. There is also overhead from 
having to write an entire page at a time, even if only a few bytes in that page changed. Some 
storage engines even overwrite the same page twice in order to avoid ending up with a partially 
updated page in the event of a power failure. Log-structured indexes also rewrite data multiple 
times due to repeated compaction and merging of SSTables. One write to the database resulting in 

multiple writes to the disk over the course of the database’s lifetime which is known as write 
amplification. It is of particular concern on SSDs, which can only overwrite blocks a limited 
number of times before wearing out. In write-heavy applications, the performance bottleneck 
might be the rate at which the database can write to disk. In this case, write amplification has a 
direct performance cost, the more that a storage engine writes to disk, the fewer writes per second 
it can handle within the available disk bandwidth. LSM-trees [8] are typically able to sustain 
higher write throughput than B- trees, partly because they sometimes have lower write 
amplification, and partly because they sequentially write compact SSTable files rather than having 
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to overwrite several pages in the tree. This difference is particularly important on magnetic hard 
drives, where sequential writes are much faster than random writes. LSM-trees [8] can be 
compressed better, and thus often produce smaller files on disk than B-trees. B-tree storage 
engines leave some disk space unused due to fragmentation, when a page is split or when a row 
cannot fit into an existing page, some space in a page remains unused. Since LSM-trees are not 
page-oriented and periodically rewrite SSTables to remove fragmentation, they have lower storage 
overheads, especially when using leveled compaction. 
 
A downside of log-structured storage is that the compaction process can sometimes interfere with 
the performance of ongoing reads and writes. Even though storage engines try to perform 
compaction incrementally and without affecting concurrent access, disks have limited resources, 
so it can easily happen that a request needs to wait while the disk finishes an expensive 
compaction operation. The impact on throughput and average response time is usually small, but 
at higher percentiles the response time of queries to log- structured storage engines can sometimes 
be quite high, and B- trees can be more predictable. Another issue with compaction arises at high 

write throughput: the disk’s finite write band- width needs to be shared between the initial write 
and the compaction threads running in the background. When writing to an empty database, the 
full disk bandwidth can be used for the initial write, but the bigger the database gets, the more 
disk bandwidth is required for compaction. If write throughput is high and compaction is not 
configured carefully, it can happen that compaction cannot keep up with the rate of incoming 
writes. In this case, the number of unmerged segments on disk keeps growing until you run out of 
disk space, and reads also slow down because they need to check more segment files. Typically, 
SSTable-based storage engines do not throttle the rate of incoming writes, even if compaction 
cannot keep up, so you need explicit monitoring to detect this situation. An advantage of B-trees is 
that each key exists in exactly one place in the index, whereas a log-structured storage engine may 
have multiple copies of the same key in different segments. This aspect makes B-trees attractive in 
databases that want to offer strong transactional semantics, in many relational databases, 
transaction isolation is implemented using locks on ranges of keys, and in a B-tree index, those 
locks can be directly attached to the tree. B-trees are very ingrained in the architecture of databases 

and provide consistently good performance for many workloads, so it’s unlikely that they will go 
away anytime soon. In new datastores, log-structured indexes are becoming increasingly popular. 
There is no quick and easy rule for determining which type of storage engine is better for your use 
case, so it is worth testing empirically. 
 
It is also very common to have secondary indexes. In relational databases, you can create several 
secondary indexes on the same table and they are often crucial for performing joins efficiently. A 
secondary index can easily be constructed from a key-value index. The main difference is that keys 
are not unique, there might be many rows with the same key. The key in an index is the thing that 
queries search for, but the value can be one of two things - it could be the actual row in question, 
or it could be a reference to the row stored elsewhere. In the latter case, the place where rows 
arestored is known as a heap file, and it stores data in no particular order. The heap file approach 
is common because it avoids duplicating data when multiple secondary indexes are present- each 
index just references a location in the heap file, andthe actual data is kept in one place. When 
updating a value without changing the key, the heap file approach can be quite efficient - the 
record can be overwritten in place, provided that the new value is not larger than the old value. 
The situation is more complicated if the new value is larger, as it probably needs to be moved to a 
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new location in the heap where there is enough space. In that case, either all indexes need to be 
updated to point at the new heap location of the record, or a forwarding pointer is left behind in 
the old heap location. In some situations, the extra hop from the index to the heap file is too much 
of a performance penalty for reads, so it can be desirable to store the indexed row directly within 

an index. This is known as a clustered index. For example, in MySQL’s InnoDB storage engine, the 
primary key of a table is always a clustered index, and secondary indexes refer to the primary key. 
A compromise between a clustered index and a non- clustered index is known as a covering index 

or index with included columns, which stores some of a table’s columns within the index. This 
allows some queries to be answered by using the index alone. The most common type of multi- 
column index is called a concatenated index, which simply combines several fields into one key by 
appending one column to another. Multi-dimensional indexes are a more general way of querying 
several columns at once, which is particularly important for geospatial data. One option is to 
translate a two-dimensional location into a single number using a space- filling curve, and then to 
use a regular B-tree index. More commonly, specialized spatial indexes such as R-trees are used. 
All the indexes discussed so far assume that you have exact data and allow you to query for exact 
values of a key, or a range of values of a key with a sort order. For example, full-text search 
engines commonly allow a search for one word to be expanded to include synonyms of the word, 
to ignore grammatical variations of words, and to search for occurrences of words near each other 
in the same document, and support various other features that depend on linguistic analysis of the 
text. To cope with typos in documents or queries, Lucene [10] is able to search text for words 
within a certain edit distance. 

 

V. CONCLUSION 
The comparative analysis of log-structured and page- oriented storage engines presented in this 
paper underscores the fundamental trade-offs between write-optimized and read- optimized 
architectures in modern data management systems. Through empirical evaluation and theoretical 
modeling, this study highlights how these storage engines cater to divergent workload 
requirements, system constraints, and performance objectives, providing critical insights for 
engineers and researchers designing storage layers for databases, file systems, or distributed data 
platforms.  

1. Log-structured storage engines, with their append-only design and sequential write 
patterns, demonstrate superior performance in write-intensive scenar- ios, particularly under 
high-throughput ingest workloads. By minimizing random I/O operations and leveraging 
compaction strategies to manage fragmentation, Log Structed engines such as those based on 
Log-Structured Merge-Trees excel inenvironments dominated by inserts, updates, and 
deletions. Their ability to amortize write amplification through bulk operations makes them 
well-suited for applications like time- series databases, logging systems, and blockchain ledgers, 
where write latency and throughput are critical. However, the inherent trade-offs of Log 
Structed Engines manifest in read-heavy workloads, where query performance degrades due to 
the need to traverse multiple sorted runs and the latency introduced by compaction processes.  

2. Additionally, the resource overhead of background compaction—CPU, memory, and 
I/O—can strain system resources, necessitating careful tuning of parameters like compaction 
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thresholds and tiering policies. In contrast, page-oriented storage engines, typified by B-tree and 
its variants, prioritize read efficiency and transactional consistency. By organizing data into 
fixed-size pages with in-place updates, page-oriented engines provide predictable read latency, 
making them ideal for OLTP systems, relational databases, and applications requiring complex 
query support or ACID guarantees.  

3. The use of write-ahead logging (WAL) ensures durability, while in-place updates reduce 
read amplification by maintaining a single copy of data. However, page-oriented engines face 
challenges under sustained write loads due to fragmentation, page splits, and the overhead of 
maintaining auxiliary structures like indexes and locks. Random write operations exacerbate 
disk seek times on HDDs, though this penalty is mitigated on SSDs.  

4. Furthermore, the reliance on fine-grained locking for concurrency control introduces 
contention in highly concurrent environments, necessitating optimizations such as latch-free 
structures or multi- version concurrency control. In conclusion, the evolution of storage engines 
reflects the broader trajectory of data systems-specialization for targeted use cases, followed by 
convergence through hybrid models. By explaining the strengths and limitations of log-
structured and page-oriented designs, this paper provides a framework for engineers to 
navigate this trade-offs and innovate in the search for optimal, context-aware storage solutions. 
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