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Abstract 

 
Change Data Capture (abbreviated as CDC) is a crucial process in Data Management that enables 
businesses to track and synchronize real-time data changes. It enables advanced data 
management, timely insights, and operational efficiencies. CDC is a way of tracking and 
collecting only the changes made to data in the source. So, instead of capturing all the data from 
the source table and refreshing the entire target table, it enables us to capture the changes that 
occurred since the last refresh. CDC is beneficial if data needs to be transferred from source to 
target tables/ databases in real-time or near-real time. It helps synchronize databases, improve 
data analytics, and keep the data warehouse up-to-date. It enables providing the most current 
data to downstream systems without reprocessing everything [4]. 
 
This comprehensive guide offers a detailed implementation of Change Data Capture using 
Snowflake and AWS S3, using retail traffic analysis data. This paper describes how to implement 
CDC using Snowflake data objects such as staging, target schema layers, tables, snowpipe, 
stream, and tasks. This resource aims to help data engineers, data architects, and IT professionals 
implement effective CDC strategies to remain competitive in the evolving retail landscape. 
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I. INTRODUCTION 
Most enterprise applications store their operational data in a relational database. These systems 
efficiently manage large volumes of transactions, including data insertion, deletion, and updates. 
Since most of these applications handle high transaction volumes and ensure data integrity (ACID 
properties: Atomicity, Consistency, Isolation, Durability), developers build analytical processing 
systems to support easy and efficient data exploration, reporting, and analytical querying over 
large datasets. Moving data from the relational database to an analytical database helps 
organizations maintain operational efficiency, improve analytical capabilities, and help businesses 
make fast data-driven decisions without affecting the enterprise application [5]. 
 
Many modern applications typically build on microservices architecture, decoupling source 
systems (publishers) from analytical systems (consumers) using an asynchronous communication 
pattern [6]. This communication pattern is impossible in most legacy application databases, so 
loading the entire dataset from the source system(s) to the analytical system(s) is necessary to 
develop the required business metrics and dashboards. This approach increases overall batch 
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execution time and load on source infrastructure. 
 
Change Data Capture process designed to transfer data from a legacy source system to an 
analytical system can prevent the need to move the entire dataset each time the source data 
changes. This approach allows for delivering near-real-time data to analytical systems or 
downstream applications, thus helping businesses make data-driven decisions quickly. 
 
 

II. ASSUMPTIONS 

 Retail customer traffic data is captured by sensors in the store and stored in the application 
system's Customer Tracker Database. 

 The Customer Tracker Database application system is a legacy system without built-in 
Pub/Sub functionality. 

 The user has created an AWS S3 bucket/folder to store Customer Tracker Data Files. 

 A data pipeline is built between the Customer Tracker Database and already AWS S3 using 
API 

 The designated AWS S3 bucket receives the data from the Customer Tracker Database. 

 The file format of Customer Tracker data files loaded into AWS S3 is CSV (Comma-separated 
values) 

 The AWS S3 bucket designated to load Retail customer traffic data files is 
URL='s3://load/files/'. 

 The user has built a Snowflake storage integration between Snowflake and the designated 
AWS S3 bucket. 

 The user will be using the Snowflake default user ‗sysadmin.‘ 

 The user must load Customer Tracker data into the ‗db_CustomerTrack‘ database. 

 The user has built the EDW, Stage, and DM schemas in the ‗db_CustomerTrack‘ database. 

 Customer Tracker data loaded in AWS S3 consists of 5 columns (StoreID, data_code, enters, 
exits, traffic_startTime). 

 The user needs the most updated data from the customer tracker database every minute.  

 The data pipeline between the customer tracker database and the designated AWS S3 bucket 
will load a new data file at a one-minute interval (near-real time). 

 The customer tracker database has new records inserted in real time and can not be updated. 

 Each new data file created for loading into the AWS S3 bucket includes data from the previous 
5 minutes. 

 The change data capture (CDC), which refreshes the target table in the EDW Schema, is 
scheduled to run at a one-minute interval. 

 The user does not want to use third-party applications to enable pub-sub functionality. 

 The CDC is enabled after a full data transfer from the customer tracker database to the target 
table in the EDW schema of the ‗db_CustomerTrack‘ database. 

 
 
III. INTRODUCTION TO SNOWFLAKE 
Snowflake is a fully managed cloud data platform explicitly designed to handle the complex 
demands of modern data warehousing, data lake, and data engineering applications. Developed 
with a cloud-native architecture, Snowflake provides a scalable, performant, and cost-effective 
solution for storing and analysing large-scale datasets across various cloud environments, 
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including AWS, Google Cloud Platform, and Microsoft Azure [1].  
 
Unlike traditional on-premises data warehouses, Snowflake utilizes a unique multi-cluster, shared-
data architecture that separates compute and storage layers. This separation allows for elastic 
scaling of compute resources independently of data storage, which enables cost savings and 
performance optimization based on workload demands [2]. The platform natively supports 
structured and semi-structured data formats, such as JSON, Avro, and Parquet, allowing seamless 
integration and analysis of diverse data types within a single environment [3]. 
 
One of Snowflake's key features is its data sharing and collaboration capabilities, which allow for 
secure, near-instantaneous data sharing across different accounts without creating redundant 
copies of data. This functionality is valuable for organizations sharing data across business units, 
partners, or customers in real-time, enhancing decision-making and operational agility [1].  
 
Snowflake automates many tasks, such as indexing, partitioning, and performance tuning. These 
automations allow organizations to concentrate on generating insights rather than managing 
database infrastructure, leading to more efficient use of resources and expertise. Snowflake also 
offers built-in security features and holds compliance certifications like SOC 2, ISO 27001, and 
HIPAA, making it an excellent choice for industries with strict data governance requirements.[3]. 
 
Due to its flexibility, ease of use, and scalability, Snowflake has garnered broad adoption across 
industries for use cases spanning data warehousing, data lakes, machine learning, data 
engineering, and real-time analytics. It represents a significant evolution in data platform design, 
aligning with the needs of data-driven organizations seeking cloud-native solutions for the 
modern data ecosystem [2]. 
 
 
IV. SNOWFLAKE ARCHITECTURE 
Snowflake‘s architecture is unique because it was designed specifically for the cloud. It separates 
the compute, and storage layers and allows highly flexible, scalable, and cost-effective data 
management. Traditional data warehouses typically combine computing and storage, which can 
lead to resource constraints and inefficient scaling. Snowflake, however, employs a multi-cluster, 
shared-data architecture where storage and computing operate independently, allowing each to 
scale independently and be optimized for different types of workloads [1].  
 
At the core of Snowflake‘s architecture are three main layers. Fig 1. visualizes the three main layers 
in Snowflake. 
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Fig.1. Snowflake Core Architecture. [3] 

 
1. Database Storage Layer: Snowflake stores all data in a centralized storage layer decoupled 

from the compute resources. Data is automatically managed, compressed, and organized in a 
proprietary format, which supports structured, semi-structured, and unstructured data formats 
such as JSON, Avro, and Parquet. This centralized storage layer allows all users to work from a 
single source of truth without creating redundant data copies. 

 
2. Virtual Warehouse (Compute) Layer: Snowflake refers to its compute resources as ―virtual 

warehouses,‖ which users can scale up, down, or pause based on computing demands. These 
warehouses consist of independent clusters of compute nodes. Each virtual warehouse can 
operate concurrently on the same data, enabling high concurrency for multiple workloads 
without resource contention or performance degradation. This design is especially 
advantageous for businesses with varying data processing needs throughout the day [3]. 

 
3. Cloud Services Layer: The cloud services layer manages functions such as metadata storage, 

authentication, access control, and query optimization. Snowflake automatically handles 
metadata management, performance tuning, and other operational tasks, allowing users to 
focus on data analysis rather than infrastructure management. This layer also includes 
Snowflake‘s innovative features like time travel, zero-copy cloning, and secure data sharing, 
making Snowflake a powerful choice for collaborative and multi-tenant data ecosystems [2,3] 

 
In addition to the three main layers, Snowflake also provides the following features. 
1. Data Sharing and Collaboration: Snowflake‘s architecture also supports data sharing and 

secure data exchange across organizations through its ―Data Marketplace‖ and "Data Sharing" 
features. This capability allows users to share live data with internal or external stakeholders in 
real time without having to copy or move the data, significantly enhancing collaboration while 
maintaining data governance [2,3]. 

 
2. Concurrency and Performance Management: Unlike traditional architectures, Snowflake‘s 

design inherently supports high concurrency. Multiple virtual warehouses can work on the 
same dataset without interference, allowing different teams to perform operations 
simultaneously without affecting performance [2]. 

Snowflake‘s architecture allows organizations to use a single platform for multiple data-related 
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tasks, including data warehousing, data lake, data engineering, and advanced analytics, thereby 
reducing data silos and creating a unified, scalable data environment that adapts to business 
demands. 

 
 

V. SPECIFY DATABASE, SCHEMA AND ROLE FOR THE USER SESSION 

 
 
5.1 Snowflake File Format 
A Snowflake file format is a defined database object containing essential information about a data 
file, including its format type (CSV or JSON), configuration settings, and compression method. 
 
Snowflake file formats simplify data loading and unloading between Snowflake tables and 
external files. When loading data into a table, you can specify the file format, which informs 
Snowflake how to read and accurately import the data. 
 
Here are the supported Snowflake file formats: 

 CSV (Comma-separated values): A commonly used format for structured data imports. 

 JSON (JavaScript Object Notation): A flexible, lightweight format for semi-structured data. 

 Avro: A binary format ideal for efficiently handling large datasets. 

 ORC (Optimized Row Columnar): A columnar format optimized for analytical workloads. 

 Parquet: A columnar format similar to ORC but with broader compatibility across systems. 

 XML (Extensible Markup Language): A text-based format frequently used for structured data 
storage.  

 
These file formats allow Snowflake to interpret and process diverse data types effectively. 
 
5.2 Create a File Format for Customer Tracker data 
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5.3 Snowflake Stage 
Snowflake stages are storage locations within Snowflake used to temporarily store data files before 
loading them into Snowflake tables or exporting them elsewhere. Each stage acts as a reference to 
specific data files, enabling Snowflake to load or unload these files without duplicating or moving 
them directly. 
 
Stages offer a solution to the challenges of directly loading files into tables by streamlining data 
transfers between Snowflake and other platforms. Common uses include: 

 Loading external data into Snowflake tables for analysis or reporting. 

 Exporting data from Snowflake tables to external storage for backup or sharing. 

 Importing internal data into Snowflake for processing and transformation. 

 Exporting data to internal locations for temporary storage or further staging. 
 
Snowflake stages can work with a range of sources, including local files and cloud storage services 
like AWS S3, Google Cloud Storage, and Azure Containers, making them a flexible tool for 
efficient data transfer. 
 
5.4 Create a Stage for Customer Tracker data 

 
 
5.5 Snowflake Database Objects 
For this example, let‘s create a data staging table in ‗Stage‘ Schema and a target table in ‗EDW‘ 
Schema 
 
5.5.1 Create a table for Customer Tracker data in STAGE Schema 

 
 
5.5.2 Create a table for Customer Tracker data in EDW Schema 
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5.5.3 Create a view for Customer Tracker data in DM Schema 

 
 
5.6 Snowflake SnowPipe 
Snowpipe is a serverless data ingestion service from Snowflake that enables fast, automated data 
loading into Snowflake tables. It continuously ingests data from files when available in a specified 
stage, supporting micro-batch loading and providing users near-real-time access to new data. This 
approach eliminates the need for manually running scheduled `COPY` commands for extensive 
batch loading, enabling a more efficient and timely data pipeline. 
 
5.6.1 Create a Snowpipe for Customer Tracker data in STAGE Schema 

 
 
5.6.2 Pause the execution of Snowpipe created for Customer Tracker Data 

 
 
5.7 Snowflake Stream 
Snowflake streams are objects that monitor and track all DML (Data Manipulation Language) 
changes—such as inserts, updates, and deletes—on a specified source table. When we create a 
stream, it adds three metadata columns to capture these changes: ―METADATA$ACTION‖, 
―METADATA$ISUPDATE‖, and ―METADATA$ROW_ID‖. These columns allow the stream to log 
modification information without duplicating the entire table‘s data. 
 
A stream essentially functions as a pointer or offset that bookmarks a specific point in the source 
table‘s timeline. When queried, the stream leverages the table‘s version history to retrieve only the 
rows that changed after this offset, along with relevant metadata. It enables Snowflake to 
reconstruct the minimal set of changes in the table since the last time the stream was accessed, 
efficiently managing data updates and preserving table history. Snowpipe is a serverless data 
ingestion service from Snowflake that enables fast, automated data loading into Snowflake tables. 
It continuously ingests data from files when available in a specified stage, supporting micro-batch 
loading and providing users near-real-time access to new data. This approach eliminates the need 
for manually running scheduled `COPY` commands for extensive batch loading, enabling a more 
efficient and timely data pipeline. 
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5.7.1 Create a Snowflake Stream for Customer Tracker data in STAGE Schema on 
STAGE.CustomerTrack_Traffic_Data Table 

 
 
5.8 Change Data Capture 
Change Data Capture (CDC) is an advanced data integration technique that identifies and 
processes changes made to data in a source system. This technique enables organizations to 
synchronize this data across multiple environments with minimal latency [3]. This process is 
beneficial for enabling real-time analytics, maintaining up-to-date data warehouses, and 
supporting zero-downtime migrations and business continuity. 
 
How CDC Works: At its core, the CDC captures, inserts, updates, and deletes events in source 
tables, transmitting only the modified data to target systems. This selective approach reduces the 
need for complete data reloads, making CDC an efficient alternative to batch processing.  
 
The CDC implements various mechanisms, including: 
1. Log-Based CDC: Tracks changes directly from transaction logs. This method, often supported 

by relational databases, is highly efficient because it does not interfere with source data 
operations [7]. 

2. Trigger-Based CDC: This approach utilizes database triggers to capture events in real time. 
While this approach can add some overhead, it offers a reliable means of tracking changes [7]. 

3. Timestamp-Based CDC: This method uses timestamp fields to detect changes made within a 
specific time. Though less immediate, it is effective for lower-frequency updates [7]. 

4. Snapshot-Based CDC: Periodically compares database snapshots, identifying changes as 
discrepancies between the snapshots. This method is less real-time but valuable in some 
analytics contexts [8]. 

 
5.8.1 Key Benefits of CDC 
1. Real-Time Data Synchronization: CDC enables the continuous and near real-time replication 

of data, which is critical for applications requiring timely information, such as real-time 
analytics, fraud detection, and supply chain management. 

2. Efficient Data Migration and Integration: CDC simplifies data management by focusing on 
changes instead of reloading all data. This approach reduces bandwidth usage and leads to 
smoother, more cost-effective cloud migrations and hybrid data integrations, making the 
process efficient for all involved. 

3. Scalability for Distributed Systems: CDC efficiently synchronizes data over wide-area 
networks to support large-scale, distributed data architectures, including multi-cloud and 
hybrid environments. 

4. Applications in Data Warehousing and Analytics: Change Data Capture (CDC) commonly 
works with cloud data warehousing solutions like Snowflake and Amazon Redshift, as well as 
with data lakes. This approach keeps analytics systems updated with the latest operational 
data, facilitating timely insights and enhancing data-driven decision-making [9]. 

 
5.8.2 Snowflake Change Data Capture 
Snowflake Change Data Capture (CDC) is a method for tracking and capturing changes made to 
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data within a Snowflake data warehouse, enabling real-time synchronization with other systems, 
databases, or applications. This technique leverages change streams, which are log-based systems 
that capture data modifications such as inserts, updates, and deletes [3]. 
 
A stream in Snowflake takes logical snapshots of the source objects, such as external tables, 
underlying tables, or views. It continuously logs changes to the source data and stores the 
captured changes in the stream. This log of data changes is updated in real-time, ensuring that any 
modifications to the data are tracked and available for downstream systems [3]. 
 
The process starts by creating a CDC-enabled Snowflake table that captures data changes. This 
table automatically tracks modifications, including metadata about the changes, and sends this 
data to a target system for replication. 
 
Once we create a stream, add metadata columns to the source table to track data modifications. 
These columns store detailed information about each change, ensuring we capture the data 
accurately. We must consume or move tracked data changes to permanent storage within a 
retention period. If we do not, those changes will become inaccessible, and we will need to create a 
new stream to continue tracking modifications. 
 
5.8.3 The key benefits of Change Data Capture (CDC) in Snowflake 
1. Real-Time Data Synchronization: CDC in Snowflake enables real-time data synchronization 

across various systems. This ensures that data is consistently updated and available, allowing 
businesses to make time-sensitive decisions with the most current data. It is particularly 
beneficial in high-velocity data environments like e-commerce, banking, and fraud detection 
[3]. 

2. Efficient Data Replication: Snowflake CDC captures and replicates only the changes made to 
data (inserts, updates, and deletes) rather than the entire dataset, which minimizes data 
movement. This efficiency makes it ideal for cloud-based architectures, where transferring 
large volumes of data over networks can be expensive and time-consuming [3]. 

3. Zero-Downtime Data Migrations: CDC helps migrate databases with zero downtime, 
facilitating smooth transitions between systems or during database upgrades. Snowflake‘s 
CDC capabilities enable continuous tracking of data changes without interrupting the system‘s 
ongoing operations [3]. 

4. Scalability & Cost-Effectiveness: Snowflake‘s cloud-native architecture makes CDC highly 
scalable. It can efficiently handle large volumes of change data, which is crucial for enterprises 
dealing with large datasets. Moreover, it reduces the need for bulk data operations and batch 
processing, reducing costs associated with these tasks [3]. 

5. Simplified Data Warehousing: With Snowflake‘s CDC, organizations ensure that their data 
warehouse continuously updates with the most recent changes. It improves data consistency 
and ensures that analytical systems always reflect the latest information without requiring 
complex ETL pipelines [3]. 
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5.8.4 Create view to capture the changes and avoid duplicates in target table of Customer 
Tracker 
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5.9 Snowflake Tasks 
In Snowflake, a task is a feature that allows us to schedule and automate SQL statements to run at 
specified intervals or in response to certain conditions. Tasks can be beneficial for automating 
recurring data processing workflows, like data loading, transformation, and preparation for 
analytics. Tasks are executed according to a set schedule or a dependency chain, beginning only 
after the completion of the preceding task [3] 
 
Tasks in Snowflake are commonly used to: 
1. Automate ETL/ELT Processes: Tasks can load data from various sources, transform it, and 

save it into Snowflake tables, enabling streamlined data integration and preparation for 
analytics. 

2. Manage Data Pipelines: Tasks support the creation of complex workflows by defining chains of 
tasks, where one task can trigger another, allowing a series of operations to occur in a specific 
sequence. 

3. Trigger Data Ingestion with Snowpipe: Snowflake tasks can be used alongside Snowpipe to 
load data into tables as new files arrive in external stages (e.g., AWS S3). 

4. Run SQL Statements on a Schedule: With scheduled execution, tasks can perform periodic 
maintenance, data transformation, or reporting tasks. 
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5.10 Snowflake Merge 
In Snowflake, the MERGE command is a DML (Data Manipulation Language) operation that 
enables users to perform conditional updates, inserts, and deletes on a target table based on the 
results of a join with a source table [3]. The MERGE statement is often used for data 
synchronization tasks, such as keeping a target table updated with new or modified data from a 
source. 
 
In Snowflake, Tasks and the MERGE command can automate data synchronization or update 
processes, especially in ETL (Extract, Transform, Load) workflows. 
 
5.10.1 Query to update target Customer Tracker table without any duplicates using Task and 
Merge 

 
 
Pause the execution of Snowpipe created for Customer Tracker Data 
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VI. LIMITATIONS AND CHALLENGES 
1. Data Latency: This guide on Change Data Capture focuses on near-real-time processing, but 

users might encounter some latency during data transfer and loading stages. This latency 
makes it less suitable for data solutions that demand ultra-low latency. 

2. Data Quality: The change data capture process depends heavily on the consistency of the 
source system data. If the data from the source system is inconsistent, additional validation 
and cleansing processes will be necessary. 

3. Scalability Issues: As data volumes grow, large file sizes in S3 and high-frequency updates 
could strain Snowpipe and Streams, impacting performance. 

4. Cost Implications: Scaling Snowflake and Amazon S3 leads to higher data storage and 
processing costs when handling high data volumes. 

5. Error Handling: Developers may need to intervene manually to resolve errors or failures in the 
data pipeline, especially in real-time data flows. 

6. Compliance and Security: Ensuring data privacy and governance in cloud environments (e.g., 
GDPR, HIPAA) adds complexity and requires continuous monitoring. 

These challenges necessitate meticulous planning, monitoring, and optimization to uphold system 
reliability, scalability, and efficiency. 
 
 
VII. CONCLUSION 
Snowflake‘s Change Data Capture (CDC) has modernized data change management, making 
traditional CDC methods less relevant. Known as a fast, cloud-native data platform with adaptable 
storage and processing options, Snowflake further elevates its capabilities with CDC. It is 
especially effective for high-transaction environments where millions of records are modified 
daily. 
 
Change Data Capture (CDC) efficiently identifies the data changes and eliminates the need to 
reload entire datasets and conserving computational, storage resources. By using the MERGE 
command, it effectively updates target tables with just the delta, significantly improves data 
accuracy, and ensures more reliable insights. 
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