

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

268

COMPREHENSIVE GUIDE ON CHANGE DATA CAPTURE USING SNOWFLAKE

AND AWS S3 WITH RETAIL TRAFFIC AND CUSTOMER INSIGHT DATA

Ravi Kiran Koppichetti
koppichettiravikiran@gmail.com

Abstract

Change Data Capture (abbreviated as CDC) is a crucial process in Data Management that enables
businesses to track and synchronize real-time data changes. It enables advanced data
management, timely insights, and operational efficiencies. CDC is a way of tracking and
collecting only the changes made to data in the source. So, instead of capturing all the data from
the source table and refreshing the entire target table, it enables us to capture the changes that
occurred since the last refresh. CDC is beneficial if data needs to be transferred from source to
target tables/ databases in real-time or near-real time. It helps synchronize databases, improve
data analytics, and keep the data warehouse up-to-date. It enables providing the most current
data to downstream systems without reprocessing everything [4].

This comprehensive guide offers a detailed implementation of Change Data Capture using
Snowflake and AWS S3, using retail traffic analysis data. This paper describes how to implement
CDC using Snowflake data objects such as staging, target schema layers, tables, snowpipe,
stream, and tasks. This resource aims to help data engineers, data architects, and IT professionals
implement effective CDC strategies to remain competitive in the evolving retail landscape.

Keywords: Snowflake, AWS S3, CDC, Change Data Capture, Retail Traffic Analysis, Customer
Insights, Real time data processing, Cloud, Retail Analytics, Continuous Data Flow, Incremental
Data Updates, CDC Strategy, Transform and Load

I. INTRODUCTION
Most enterprise applications store their operational data in a relational database. These systems
efficiently manage large volumes of transactions, including data insertion, deletion, and updates.
Since most of these applications handle high transaction volumes and ensure data integrity (ACID
properties: Atomicity, Consistency, Isolation, Durability), developers build analytical processing
systems to support easy and efficient data exploration, reporting, and analytical querying over
large datasets. Moving data from the relational database to an analytical database helps
organizations maintain operational efficiency, improve analytical capabilities, and help businesses
make fast data-driven decisions without affecting the enterprise application [5].

Many modern applications typically build on microservices architecture, decoupling source
systems (publishers) from analytical systems (consumers) using an asynchronous communication
pattern [6]. This communication pattern is impossible in most legacy application databases, so
loading the entire dataset from the source system(s) to the analytical system(s) is necessary to
develop the required business metrics and dashboards. This approach increases overall batch

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

269

execution time and load on source infrastructure.

Change Data Capture process designed to transfer data from a legacy source system to an
analytical system can prevent the need to move the entire dataset each time the source data
changes. This approach allows for delivering near-real-time data to analytical systems or
downstream applications, thus helping businesses make data-driven decisions quickly.

II. ASSUMPTIONS

 Retail customer traffic data is captured by sensors in the store and stored in the application
system's Customer Tracker Database.

 The Customer Tracker Database application system is a legacy system without built-in
Pub/Sub functionality.

 The user has created an AWS S3 bucket/folder to store Customer Tracker Data Files.

 A data pipeline is built between the Customer Tracker Database and already AWS S3 using
API

 The designated AWS S3 bucket receives the data from the Customer Tracker Database.

 The file format of Customer Tracker data files loaded into AWS S3 is CSV (Comma-separated
values)

 The AWS S3 bucket designated to load Retail customer traffic data files is
URL='s3://load/files/'.

 The user has built a Snowflake storage integration between Snowflake and the designated
AWS S3 bucket.

 The user will be using the Snowflake default user ‗sysadmin.‘

 The user must load Customer Tracker data into the ‗db_CustomerTrack‘ database.

 The user has built the EDW, Stage, and DM schemas in the ‗db_CustomerTrack‘ database.

 Customer Tracker data loaded in AWS S3 consists of 5 columns (StoreID, data_code, enters,
exits, traffic_startTime).

 The user needs the most updated data from the customer tracker database every minute.

 The data pipeline between the customer tracker database and the designated AWS S3 bucket
will load a new data file at a one-minute interval (near-real time).

 The customer tracker database has new records inserted in real time and can not be updated.

 Each new data file created for loading into the AWS S3 bucket includes data from the previous
5 minutes.

 The change data capture (CDC), which refreshes the target table in the EDW Schema, is
scheduled to run at a one-minute interval.

 The user does not want to use third-party applications to enable pub-sub functionality.

 The CDC is enabled after a full data transfer from the customer tracker database to the target
table in the EDW schema of the ‗db_CustomerTrack‘ database.

III. INTRODUCTION TO SNOWFLAKE
Snowflake is a fully managed cloud data platform explicitly designed to handle the complex
demands of modern data warehousing, data lake, and data engineering applications. Developed
with a cloud-native architecture, Snowflake provides a scalable, performant, and cost-effective
solution for storing and analysing large-scale datasets across various cloud environments,

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

270

including AWS, Google Cloud Platform, and Microsoft Azure [1].

Unlike traditional on-premises data warehouses, Snowflake utilizes a unique multi-cluster, shared-
data architecture that separates compute and storage layers. This separation allows for elastic
scaling of compute resources independently of data storage, which enables cost savings and
performance optimization based on workload demands [2]. The platform natively supports
structured and semi-structured data formats, such as JSON, Avro, and Parquet, allowing seamless
integration and analysis of diverse data types within a single environment [3].

One of Snowflake's key features is its data sharing and collaboration capabilities, which allow for
secure, near-instantaneous data sharing across different accounts without creating redundant
copies of data. This functionality is valuable for organizations sharing data across business units,
partners, or customers in real-time, enhancing decision-making and operational agility [1].

Snowflake automates many tasks, such as indexing, partitioning, and performance tuning. These
automations allow organizations to concentrate on generating insights rather than managing
database infrastructure, leading to more efficient use of resources and expertise. Snowflake also
offers built-in security features and holds compliance certifications like SOC 2, ISO 27001, and
HIPAA, making it an excellent choice for industries with strict data governance requirements.[3].

Due to its flexibility, ease of use, and scalability, Snowflake has garnered broad adoption across
industries for use cases spanning data warehousing, data lakes, machine learning, data
engineering, and real-time analytics. It represents a significant evolution in data platform design,
aligning with the needs of data-driven organizations seeking cloud-native solutions for the
modern data ecosystem [2].

IV. SNOWFLAKE ARCHITECTURE
Snowflake‘s architecture is unique because it was designed specifically for the cloud. It separates
the compute, and storage layers and allows highly flexible, scalable, and cost-effective data
management. Traditional data warehouses typically combine computing and storage, which can
lead to resource constraints and inefficient scaling. Snowflake, however, employs a multi-cluster,
shared-data architecture where storage and computing operate independently, allowing each to
scale independently and be optimized for different types of workloads [1].

At the core of Snowflake‘s architecture are three main layers. Fig 1. visualizes the three main layers
in Snowflake.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

271

Fig.1. Snowflake Core Architecture. [3]

1. Database Storage Layer: Snowflake stores all data in a centralized storage layer decoupled

from the compute resources. Data is automatically managed, compressed, and organized in a
proprietary format, which supports structured, semi-structured, and unstructured data formats
such as JSON, Avro, and Parquet. This centralized storage layer allows all users to work from a
single source of truth without creating redundant data copies.

2. Virtual Warehouse (Compute) Layer: Snowflake refers to its compute resources as ―virtual

warehouses,‖ which users can scale up, down, or pause based on computing demands. These
warehouses consist of independent clusters of compute nodes. Each virtual warehouse can
operate concurrently on the same data, enabling high concurrency for multiple workloads
without resource contention or performance degradation. This design is especially
advantageous for businesses with varying data processing needs throughout the day [3].

3. Cloud Services Layer: The cloud services layer manages functions such as metadata storage,

authentication, access control, and query optimization. Snowflake automatically handles
metadata management, performance tuning, and other operational tasks, allowing users to
focus on data analysis rather than infrastructure management. This layer also includes
Snowflake‘s innovative features like time travel, zero-copy cloning, and secure data sharing,
making Snowflake a powerful choice for collaborative and multi-tenant data ecosystems [2,3]

In addition to the three main layers, Snowflake also provides the following features.
1. Data Sharing and Collaboration: Snowflake‘s architecture also supports data sharing and

secure data exchange across organizations through its ―Data Marketplace‖ and "Data Sharing"
features. This capability allows users to share live data with internal or external stakeholders in
real time without having to copy or move the data, significantly enhancing collaboration while
maintaining data governance [2,3].

2. Concurrency and Performance Management: Unlike traditional architectures, Snowflake‘s

design inherently supports high concurrency. Multiple virtual warehouses can work on the
same dataset without interference, allowing different teams to perform operations
simultaneously without affecting performance [2].

Snowflake‘s architecture allows organizations to use a single platform for multiple data-related

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

272

tasks, including data warehousing, data lake, data engineering, and advanced analytics, thereby
reducing data silos and creating a unified, scalable data environment that adapts to business
demands.

V. SPECIFY DATABASE, SCHEMA AND ROLE FOR THE USER SESSION

5.1 Snowflake File Format
A Snowflake file format is a defined database object containing essential information about a data
file, including its format type (CSV or JSON), configuration settings, and compression method.

Snowflake file formats simplify data loading and unloading between Snowflake tables and
external files. When loading data into a table, you can specify the file format, which informs
Snowflake how to read and accurately import the data.

Here are the supported Snowflake file formats:

 CSV (Comma-separated values): A commonly used format for structured data imports.

 JSON (JavaScript Object Notation): A flexible, lightweight format for semi-structured data.

 Avro: A binary format ideal for efficiently handling large datasets.

 ORC (Optimized Row Columnar): A columnar format optimized for analytical workloads.

 Parquet: A columnar format similar to ORC but with broader compatibility across systems.

 XML (Extensible Markup Language): A text-based format frequently used for structured data
storage.

These file formats allow Snowflake to interpret and process diverse data types effectively.

5.2 Create a File Format for Customer Tracker data

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

273

5.3 Snowflake Stage
Snowflake stages are storage locations within Snowflake used to temporarily store data files before
loading them into Snowflake tables or exporting them elsewhere. Each stage acts as a reference to
specific data files, enabling Snowflake to load or unload these files without duplicating or moving
them directly.

Stages offer a solution to the challenges of directly loading files into tables by streamlining data
transfers between Snowflake and other platforms. Common uses include:

 Loading external data into Snowflake tables for analysis or reporting.

 Exporting data from Snowflake tables to external storage for backup or sharing.

 Importing internal data into Snowflake for processing and transformation.

 Exporting data to internal locations for temporary storage or further staging.

Snowflake stages can work with a range of sources, including local files and cloud storage services
like AWS S3, Google Cloud Storage, and Azure Containers, making them a flexible tool for
efficient data transfer.

5.4 Create a Stage for Customer Tracker data

5.5 Snowflake Database Objects
For this example, let‘s create a data staging table in ‗Stage‘ Schema and a target table in ‗EDW‘
Schema

5.5.1 Create a table for Customer Tracker data in STAGE Schema

5.5.2 Create a table for Customer Tracker data in EDW Schema

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

274

5.5.3 Create a view for Customer Tracker data in DM Schema

5.6 Snowflake SnowPipe
Snowpipe is a serverless data ingestion service from Snowflake that enables fast, automated data
loading into Snowflake tables. It continuously ingests data from files when available in a specified
stage, supporting micro-batch loading and providing users near-real-time access to new data. This
approach eliminates the need for manually running scheduled `COPY` commands for extensive
batch loading, enabling a more efficient and timely data pipeline.

5.6.1 Create a Snowpipe for Customer Tracker data in STAGE Schema

5.6.2 Pause the execution of Snowpipe created for Customer Tracker Data

5.7 Snowflake Stream
Snowflake streams are objects that monitor and track all DML (Data Manipulation Language)
changes—such as inserts, updates, and deletes—on a specified source table. When we create a
stream, it adds three metadata columns to capture these changes: ―METADATA$ACTION‖,
―METADATA$ISUPDATE‖, and ―METADATA$ROW_ID‖. These columns allow the stream to log
modification information without duplicating the entire table‘s data.

A stream essentially functions as a pointer or offset that bookmarks a specific point in the source
table‘s timeline. When queried, the stream leverages the table‘s version history to retrieve only the
rows that changed after this offset, along with relevant metadata. It enables Snowflake to
reconstruct the minimal set of changes in the table since the last time the stream was accessed,
efficiently managing data updates and preserving table history. Snowpipe is a serverless data
ingestion service from Snowflake that enables fast, automated data loading into Snowflake tables.
It continuously ingests data from files when available in a specified stage, supporting micro-batch
loading and providing users near-real-time access to new data. This approach eliminates the need
for manually running scheduled `COPY` commands for extensive batch loading, enabling a more
efficient and timely data pipeline.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

275

5.7.1 Create a Snowflake Stream for Customer Tracker data in STAGE Schema on
STAGE.CustomerTrack_Traffic_Data Table

5.8 Change Data Capture
Change Data Capture (CDC) is an advanced data integration technique that identifies and
processes changes made to data in a source system. This technique enables organizations to
synchronize this data across multiple environments with minimal latency [3]. This process is
beneficial for enabling real-time analytics, maintaining up-to-date data warehouses, and
supporting zero-downtime migrations and business continuity.

How CDC Works: At its core, the CDC captures, inserts, updates, and deletes events in source
tables, transmitting only the modified data to target systems. This selective approach reduces the
need for complete data reloads, making CDC an efficient alternative to batch processing.

The CDC implements various mechanisms, including:
1. Log-Based CDC: Tracks changes directly from transaction logs. This method, often supported

by relational databases, is highly efficient because it does not interfere with source data
operations [7].

2. Trigger-Based CDC: This approach utilizes database triggers to capture events in real time.
While this approach can add some overhead, it offers a reliable means of tracking changes [7].

3. Timestamp-Based CDC: This method uses timestamp fields to detect changes made within a
specific time. Though less immediate, it is effective for lower-frequency updates [7].

4. Snapshot-Based CDC: Periodically compares database snapshots, identifying changes as
discrepancies between the snapshots. This method is less real-time but valuable in some
analytics contexts [8].

5.8.1 Key Benefits of CDC
1. Real-Time Data Synchronization: CDC enables the continuous and near real-time replication

of data, which is critical for applications requiring timely information, such as real-time
analytics, fraud detection, and supply chain management.

2. Efficient Data Migration and Integration: CDC simplifies data management by focusing on
changes instead of reloading all data. This approach reduces bandwidth usage and leads to
smoother, more cost-effective cloud migrations and hybrid data integrations, making the
process efficient for all involved.

3. Scalability for Distributed Systems: CDC efficiently synchronizes data over wide-area
networks to support large-scale, distributed data architectures, including multi-cloud and
hybrid environments.

4. Applications in Data Warehousing and Analytics: Change Data Capture (CDC) commonly
works with cloud data warehousing solutions like Snowflake and Amazon Redshift, as well as
with data lakes. This approach keeps analytics systems updated with the latest operational
data, facilitating timely insights and enhancing data-driven decision-making [9].

5.8.2 Snowflake Change Data Capture
Snowflake Change Data Capture (CDC) is a method for tracking and capturing changes made to

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

276

data within a Snowflake data warehouse, enabling real-time synchronization with other systems,
databases, or applications. This technique leverages change streams, which are log-based systems
that capture data modifications such as inserts, updates, and deletes [3].

A stream in Snowflake takes logical snapshots of the source objects, such as external tables,
underlying tables, or views. It continuously logs changes to the source data and stores the
captured changes in the stream. This log of data changes is updated in real-time, ensuring that any
modifications to the data are tracked and available for downstream systems [3].

The process starts by creating a CDC-enabled Snowflake table that captures data changes. This
table automatically tracks modifications, including metadata about the changes, and sends this
data to a target system for replication.

Once we create a stream, add metadata columns to the source table to track data modifications.
These columns store detailed information about each change, ensuring we capture the data
accurately. We must consume or move tracked data changes to permanent storage within a
retention period. If we do not, those changes will become inaccessible, and we will need to create a
new stream to continue tracking modifications.

5.8.3 The key benefits of Change Data Capture (CDC) in Snowflake
1. Real-Time Data Synchronization: CDC in Snowflake enables real-time data synchronization

across various systems. This ensures that data is consistently updated and available, allowing
businesses to make time-sensitive decisions with the most current data. It is particularly
beneficial in high-velocity data environments like e-commerce, banking, and fraud detection
[3].

2. Efficient Data Replication: Snowflake CDC captures and replicates only the changes made to
data (inserts, updates, and deletes) rather than the entire dataset, which minimizes data
movement. This efficiency makes it ideal for cloud-based architectures, where transferring
large volumes of data over networks can be expensive and time-consuming [3].

3. Zero-Downtime Data Migrations: CDC helps migrate databases with zero downtime,
facilitating smooth transitions between systems or during database upgrades. Snowflake‘s
CDC capabilities enable continuous tracking of data changes without interrupting the system‘s
ongoing operations [3].

4. Scalability & Cost-Effectiveness: Snowflake‘s cloud-native architecture makes CDC highly
scalable. It can efficiently handle large volumes of change data, which is crucial for enterprises
dealing with large datasets. Moreover, it reduces the need for bulk data operations and batch
processing, reducing costs associated with these tasks [3].

5. Simplified Data Warehousing: With Snowflake‘s CDC, organizations ensure that their data
warehouse continuously updates with the most recent changes. It improves data consistency
and ensures that analytical systems always reflect the latest information without requiring
complex ETL pipelines [3].

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

277

5.8.4 Create view to capture the changes and avoid duplicates in target table of Customer
Tracker

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

278

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

279

5.9 Snowflake Tasks
In Snowflake, a task is a feature that allows us to schedule and automate SQL statements to run at
specified intervals or in response to certain conditions. Tasks can be beneficial for automating
recurring data processing workflows, like data loading, transformation, and preparation for
analytics. Tasks are executed according to a set schedule or a dependency chain, beginning only
after the completion of the preceding task [3]

Tasks in Snowflake are commonly used to:
1. Automate ETL/ELT Processes: Tasks can load data from various sources, transform it, and

save it into Snowflake tables, enabling streamlined data integration and preparation for
analytics.

2. Manage Data Pipelines: Tasks support the creation of complex workflows by defining chains of
tasks, where one task can trigger another, allowing a series of operations to occur in a specific
sequence.

3. Trigger Data Ingestion with Snowpipe: Snowflake tasks can be used alongside Snowpipe to
load data into tables as new files arrive in external stages (e.g., AWS S3).

4. Run SQL Statements on a Schedule: With scheduled execution, tasks can perform periodic
maintenance, data transformation, or reporting tasks.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

280

5.10 Snowflake Merge
In Snowflake, the MERGE command is a DML (Data Manipulation Language) operation that
enables users to perform conditional updates, inserts, and deletes on a target table based on the
results of a join with a source table [3]. The MERGE statement is often used for data
synchronization tasks, such as keeping a target table updated with new or modified data from a
source.

In Snowflake, Tasks and the MERGE command can automate data synchronization or update
processes, especially in ETL (Extract, Transform, Load) workflows.

5.10.1 Query to update target Customer Tracker table without any duplicates using Task and
Merge

Pause the execution of Snowpipe created for Customer Tracker Data

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

281

VI. LIMITATIONS AND CHALLENGES
1. Data Latency: This guide on Change Data Capture focuses on near-real-time processing, but

users might encounter some latency during data transfer and loading stages. This latency
makes it less suitable for data solutions that demand ultra-low latency.

2. Data Quality: The change data capture process depends heavily on the consistency of the
source system data. If the data from the source system is inconsistent, additional validation
and cleansing processes will be necessary.

3. Scalability Issues: As data volumes grow, large file sizes in S3 and high-frequency updates
could strain Snowpipe and Streams, impacting performance.

4. Cost Implications: Scaling Snowflake and Amazon S3 leads to higher data storage and
processing costs when handling high data volumes.

5. Error Handling: Developers may need to intervene manually to resolve errors or failures in the
data pipeline, especially in real-time data flows.

6. Compliance and Security: Ensuring data privacy and governance in cloud environments (e.g.,
GDPR, HIPAA) adds complexity and requires continuous monitoring.

These challenges necessitate meticulous planning, monitoring, and optimization to uphold system
reliability, scalability, and efficiency.

VII. CONCLUSION
Snowflake‘s Change Data Capture (CDC) has modernized data change management, making
traditional CDC methods less relevant. Known as a fast, cloud-native data platform with adaptable
storage and processing options, Snowflake further elevates its capabilities with CDC. It is
especially effective for high-transaction environments where millions of records are modified
daily.

Change Data Capture (CDC) efficiently identifies the data changes and eliminates the need to
reload entire datasets and conserving computational, storage resources. By using the MERGE
command, it effectively updates target tables with just the delta, significantly improves data
accuracy, and ensures more reliable insights.

REFERENCES
1. M. Sacco, F. Malomo, and H. Wang, Snowflake Cloud Data Platform: A Step-by-Step Guide to

Modern Cloud Analytics. Sebastopol, CA: O'Reilly Media, 2020.
2. D. Abadi, "Data Management in the Cloud: Limitations and Opportunities," Communications

of the ACM, vol. 52, no. 6, pp. 45-51, 2019.
3. Snowflake Inc., Snowflake Documentation. Accessed: Jan. 7, 2021. [Online]. Available:

https://docs.snowflake.com
4. Giri, V., & Gupta, S. (2018). Capture Streaming Data with Change-Data-Capture. In Practical

Enterprise Data Lake Insights (pp. 87–123). Apress L. P. https://doi.org/10.1007/978-1-4842-
3522-5_3

5. Medjahed, B., Ouzzani, M., & Elmagarmid, A. (2009). Generalization of acid properties.
6. Baldoni, R., Contenti, M., Virgillito, A. (2003). The Evolution of Publish/Subscribe

Communication Systems. In: Schiper, A., Shvartsman, A.A., Weatherspoon, H., Zhao, B.Y.
(eds) Future Directions in Distributed Computing. Lecture Notes in Computer Science, vol

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

282

2584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37795-6_25
7. Eccles, Mitchell (2013). Pragmatic development of service based real-time change data capture.

PHD thesis, Aston University.
8. Wei Du and X. Zou, "Differential snapshot algorithms based on Hadoop MapReduce," 2015

12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
Zhangjiajie, 2015, pp. 1203-1208, doi: 10.1109/FSKD.2015.7382113

9. Devarasetty, N. (2017). Scalable Data Engineering Platforms for AI-Powered Business
Intelligence. International Journal of Machine Learning Research in Cybersecurity and
Artificial Intelligence, 8(1), 1-27.

