

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

162

DESIGNING HIGH-THROUGHPUT MICROSERVICES: A COMPARATIVE STUDY

OF REST, GRPC, AND GRAPHQL PATTERNS

Pradeep Bhosale
Senior Software Engineer

bhosale.pradeep1987@gmail.com

Abstract

Microservices architectures have reshaped how organizations develop and deliver software,
enabling domain-aligned services that can scale independently. However, achieving high
throughput handling large volumes of requests under stringent latency constraints remains a
formidable challenge. The choice of communication pattern across microservices significantly
impacts performance, resource usage, and developer productivity. This paper thoroughly compares
REST, gRPC, and GraphQL as leading approaches for microservices inter-service
communications, highlighting each method’s characteristics, advantages, and downsides. We
examine how these protocols affect data transfer, concurrency, integration complexity, and the
user experience in microservices-based systems.

By showcasing best practices, anti-patterns, real-world scenarios, architecture diagrams, and
performance metrics, we aim to guide architects, developers, and DevOps engineers seeking to
build robust, high-throughput microservices. We discuss techniques for optimizing request flows,
avoiding chatty or inefficient call patterns, applying caching or streaming paradigms, and
ensuring that teams maintain consistent governance of microservices across the enterprise.
Ultimately, this comparative study provides a practical roadmap for adopting the right
communication approach REST, gRPC, or GraphQL to sustain the throughput and resilience
demands of modern cloud-native systems

Keywords: Microservices, High Throughput, REST, gRPC, GraphQL, Scalable Architecture,
Performance, API Patterns, Comparative Study, Cloud Native

I. INTRODUCTION
A. Context
The shift to microservices has spread application logic across multiple independently deployable
units, each focusing on a domain function. To collaborate effectively, these services must
communicate in ways that are both efficient and maintainable. Overly chatty or poorly
orchestrated calls can degrade user experience, hamper concurrency, and escalate operating costs
[1].

B. Goal
This paper compares the key communication patterns used by microservices REST, gRPC, and

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

163

GraphQL through the lens of high throughput needs. We explore their architectures, typical use
cases, performance profiles, and synergy with microservices best practices. By delineating patterns
for each approach and anti-patterns that hamper throughput, we map out how to scale
microservices effectively.

C. Structure

 We begin with the historical backdrop of microservices and typical performance concerns.

 We then dedicate sections to REST, gRPC, and GraphQL, analyzing how each approach fosters
or limits high throughput.

 Following that, we highlight organizational, testing, and deployment considerations.

We conclude with real-world examples, guidelines, and references.

II. HISTORICAL BACKGROUND: MICROSERVICES AND COMMUNICATION
EVOLUTION

A. From Monoliths to Microservices
Legacy monoliths often hamper horizontal scaling and continuous delivery. The microservices
approach emerged as a response, providing smaller, domain-focused services that can scale or
update independently [2]. While each service solves domain logic, their interactions form an
intricate web of network calls leading to complexities in performance optimization.

B. The Rise of REST, gRPC, and GraphQL

 REST: By the early 2010s, RESTful APIs using JSON over HTTP became the default for web
and microservices, thanks to simplicity and broad tooling [3].

 gRPC: Emerged from internal Google technologies, adopting HTTP/2 and Protobuf for high
efficiency, often used in microservices backbones requiring minimal overhead [4].

 GraphQL: Created at Facebook (circa 2012, open-sourced 2015), gained traction for front-end
data fetching, consolidating multiple REST calls into a single flexible query [5].

Each approach aligns with different performance, developer, and integration trade-offs.

III. CORE PRINCIPLES OF HIGH-THROUGHPUT MICROSERVICES
A. Domain-Driven Boundaries
Microservices revolve around decoupled domain contexts like User Service, Order Service,
Payment Service which helps each service scale horizontally [6]. Clear domain boundaries reduce
cross-service coupling and data duplication.

B. Minimizing Overhead in Communication
Given frequent interactions, each call’s overhead matters significantly. Large JSON payloads or
repeated round-trip requests can degrade throughput. Protocol overhead is thus a focal point in
comparing REST, gRPC, and GraphQL.

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

164

C. Balancing Synchronous vs. Asynchronous
Microservices can use synchronous calls for immediate replies or asynchronous messaging (Kafka,
RabbitMQ) for decoupled workloads. The chosen approach affects end-to-end latency,
concurrency patterns, and back-pressure management [7].

IV. REST: SIMPLICITY AND UBIQUITY
REST stands for Representational State Transfer, a resource-oriented style that uses conventional
HTTP methods GET, POST, PUT, DELETE and typically sends/receives JSON data.

A. REST Patterns for High Throughput
CRUD Resource Endpoints: E.g., GET /users/{id}, POST /orders. Straightforward for standard
data manipulations.

 Aggregated Endpoints: Minimizing multiple round-trips by returning needed data in a single
call, if possible.

B. REST Anti-Patterns

 Multiple Round-Trips for a Single User Request
a. Symptom: A front-end calls many small endpoints, each retrieving partial data, raising

overhead.
b. Prevention: Provide aggregated or carefully structured endpoints.

 Excessive Payloads (Over-Fetching)
a. Issue: Single endpoints returning large sets of unneeded fields.
b. Consequence: Wastes bandwidth, CPU for parsing.
c. Fix: Consider partial response parameters or adopt alternative protocols if data needs are

dynamic [8].

C. Performance Considerations

 JSON Overhead: Text-based, can be heavier than binary formats. Tools like gzip compression
or more compact object representations partially mitigate.

 HTTP/1.1: Lacks built-in streaming multiplexing; solutions like chunked responses or SSE
(Server-Sent Events) can handle partial streaming but remain less efficient than HTTP/2-based
solutions [9].

V. GRPC: HIGH-PERFORMANCE RPC
gRPC uses HTTP/2 for transport and Protobuf (binary) for message encoding, providing a robust,
type-safe communication model well-suited to microservices requiring minimal overhead.

A. gRPC Patterns

 Unary RPC: A single request produces a single response, akin to typical function calls.

 Server/Client Streaming: Either the client or server streams a sequence of messages.

 Bidirectional Streaming: Both ends can stream messages concurrently. This approach is
powerful for real-time data feeds [10].

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

165

B. gRPC Anti-Patterns

 Ignoring Service Boundaries
a. Description: Attempting to unify many domain contexts behind a single. proto file.
b. Outcome: Overly large, monolithic. proto, limiting independent evolution.
c. Remedy: Segment. proto definitions per microservice domain.

 Forcing gRPC on External Clients
a. Description: Requiring external partners or front-end apps to adopt gRPC tooling.
b. Consequence: Incompatible or reluctant partners.
c. Solution: Use gRPC for internal microservices calls, possibly bridging to REST for external

integrations [11].

C. Performance Impact
Tests show that gRPC calls can significantly reduce per-request overhead, especially for large or
high-frequency interactions. However, adopting gRPC involves code generation from. proto files
and a slightly higher initial learning curve for teams accustomed to JSON and REST [12].

VI. GRAPHQL: FLEXIBLE QUERIES WITH A SINGLE END POINT
GraphQL centralizes data access behind a single schema, letting clients specify exactly what fields
they need. This approach addresses REST’s potential under-/over-fetching but demands a well-
managed schema and resolvers that orchestrate calls across microservices.

A. GraphQL Patterns
 Gateway or BFF (Backend-For-Frontend)

a. Idea: A GraphQL gateway queries multiple microservices internally, aggregating data.
Clients only see one endpoint.

b. Benefit: Minimizes the number of calls from front-end or external consumers.

 Schema Federation
a. Description: Combine schemas from multiple microservices into a single GraphQL schema,

each micro service implementing part of the overall graph [13].
b. Result: A flexible, unified data layer.

B. GraphQL Anti-Patterns
 Excessive Nested Queries

a. Issue: If a single query demands deeply nested or broad data sets, it triggers a “fan-out” to
multiple microservices.

b. Consequence: High CPU usage on the GraphQL gateway, potentially slow responses.
c. Solution: Implement complexity limits, caching, or require partial queries.

 Underestimating Server-Side Complexity
a. Description: Each field resolver might trigger new calls, potentially leading to N+1 call

patterns if poorly designed.
b. Remedy: Use data loaders or caching to avoid repeated calls for the same sub-data set.

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

166

C. GraphQL Performance Observations
GraphQL can reduce the number of round-trips from the perspective of front-end or external
clients, but potentially at the cost of increased overhead on the gateway if multiple microservices
must be queried behind the scenes. Proper caching and aggregator patterns mitigate this effect
[14].

VII. PATTERNS FOR ACHIEVING HIGH THROUGHPUT
A. Minimizing Chatty Interactions
A key principle in high-throughput microservices is avoiding chatty synchronous calls. For
instance, if a user-facing request requires data from three microservices, try to combine them in
one orchestrated call or adopt asynchronous flows [15].

 Pattern: “Composite Microservice or Aggregator”
a. Idea: A service specifically aggregates or composes data from other services to respond to a

single client request.
b. Benefit: Minimizes over-the-wire calls from the client’s perspective.

B. Caching and Batching

 Caching: Microservices occasionally cache frequently requested data. This is especially
beneficial in GraphQL or REST endpoints that retrieve often-accessed, slowly changing data.

 Batching: In gRPC or GraphQL, streaming or batch endpoints reduce overhead when many
small items are needed at once.

VIII. ANTI-PATTERNS UNDERMINING THROUGHPUT
A. Over-Complex Schemas or Endpoints
In GraphQL, an overly broad schema can lead to queries that push the gateway to do massive fan-
out calls. Similarly, a single REST endpoint that returns everything with no option for partial fields
can waste bandwidth [16].

B. Over-Synchronization
If microservices repeatedly block on each other for large or synchronous calls, the system forms a
chain of dependencies that amplify latencies and potential fail states.

IX. COMPARING REST, GRPC, AND GRAPHQL

A. Qualitative Comparison
Table I. Overview of Communication Approaches

Aspect REST gRPC GraphQL

Protocol HTTP/1.1
(commonly)

HTTP/2 HTTP (mostly) + single
endpoint

Data Format JSON (often text-
based)

Protobuf (binary) JSON for queries and
responses

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

167

Performance Moderate
overhead

Typically faster, less
overhead

Potentially reduced
calls, but overhead in

resolvers

Developer
Ergonomics

Very easy, widely
adopted

Requires .proto files,
codegen

Flexible queries, single
endpoint

Use Cases External APIs,
simpler calls

Internal
microservices, HPC

Flexible front-end
integration

Studies indicate that gRPC can yield 20–50% better throughput and significantly lower CPU usage
for binary large calls or high-frequency internal calls. Meanwhile, GraphQL excels in front-end
scenarios with dynamic data fetching, though it can produce overhead on the server side. REST
remains a balanced default with rich ecosystem support

X. OBSERVABILITY AND MONITORING: THE KEY TO TUNING PERFORMANCE
A. Observability Tools

 Metrics (Prometheus, StatsD) track request rates, latencies, error rates.

 Logging (Elastic Stack, Splunk) captures details of calls, potential errors, and correlations
across microservices [17].

 Distributed Tracing (Zipkin, Jaeger) reveals call flows and identifies slow links in the chain.

B. Testing Throughput Under Stress
Load tests (JMeter, Gatling) measure if chosen protocols (REST, gRPC, GraphQL) handle expected
concurrency. Observing CPU usage, memory overhead, and latencies helps confirm the solution’s
viability [18].

XI. ORGANIZATIONAL ASPECT

Even the best-engineered solutions falter if teams are unprepared or working in silos.
Microservices that adopt diverse communication patterns without overarching guidelines might
hamper knowledge sharing or hamper integration [19]. A DevOps culture emphasizing code
reviews, architecture run books, and consistent instrumentation fosters synergy across squads.

XII. REAL-WORLD CASE STUDY: E-COMMERCE ARCHITECTURE
A. Legacy REST Overload
An e-commerce site initially used many small REST endpoints for front-end calls, each returning
partial data. As traffic soared, the system faced high CPU usage and a deluge of network
overhead. Customer pages loaded slowly, and error rates spiked during peak times.

B. gRPC for Internal Microservices
The engineering team introduced a microservices backbone with gRPC for critical internal calls,

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

168

drastically reducing overhead. Meanwhile, external clients continued using REST. This hybrid
approach improved concurrency while preserving external compatibility.

C. Results
Performance metrics revealed a 30% improvement in average latency, and CPU usage on the
aggregator services decreased by 25%. The team credited the synergy of adopting gRPC for heavy
internal data flows, caching frequent calls, and carefully limiting synchronous patterns.

XIII. REAL-WORLD CASE STUDY: MEDIA COMPANY’S GRAPHQL ADOPTION
A. Problem: Over-Fetching with REST
A media platform’s front-end needed multiple REST calls for user profile data, preferences,
recommended articles, and advertisements. This “client-chaining” approach slowed page renders.

B. GraphQL Integration
They introduced a GraphQL gateway that orchestrated calls to microservices. The front-end
retrieves a single query, eliminating multiple round-trips. The microservices behind the gateway
remained typical REST or gRPC, while GraphQL resolvers aggregated data.

C. Observed Performance Gains
Front-end calls dropped from 6–8 separate requests to a single GraphQL query. Time to interact
improved by 20–40% on average, though the gateway had to be carefully optimized for
concurrency to avoid becoming a bottleneck [20].

XIV. TESTING AND CONTINUOUS DELIVERY FOR COMMUNICATION PATTERNS
A. Contract Testing
When services expose REST or gRPC endpoints, consumer-driven contracts ensure versions
remain compatible. Tools like Pact or custom stubs let each consumer confirm the service matches
the contract, preventing broken deployments under high load [21].

B. Canary or Blue-Green Deployments
Rolling out changes to endpoints (e.g., new gRPC. proto versions or updated GraphQL schemas)
can risk breakage or performance regressions. Canary deployments in a fraction of traffic allow
teams to observe real-world load effects and revert quickly if problems occur.

XV. SECURITY AND COMPLIANCE
Different protocols must maintain secure channels:

 REST often uses TLS (HTTPS), potential OAuth2 tokens.

 gRPC uses HTTP/2 TLS plus credentials in metadata.

 GraphQL can embed tokens in headers, but must ensure query inputs are sanitized.

Additionally, GDPR or data privacy constraints might limit how user data is fetched or stored,

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

169

requiring certain custom logic in resolvers or endpoints [22].

XVI. PERFORMANCE AND BENCHMARKING APPROACH
A. Setup and Metrics
Benchmarking might involve a local cluster with multiple microservices. Tools like wrk or Locust
can generate load with varying concurrency levels. Key metrics:

 Requests per Second (RPS): measures throughput.

 P99 Latency: ensures tail performance meets SLAs.

 CPU/Memory usage: helps identify overhead from data serialization or concurrency.

B. Example Observations
Comparing REST vs. gRPC with large messages (1–2 MB payloads) might show gRPC sustaining
30% more RPS at comparable CPU usage, due to binary compression. GraphQL might be best for
front-end queries that reduce total round trips, but with overhead on resolver logic.

XVII. ANTI-PATTERNS RECAP
A. Overlaps

 Over-chattiness in REST is akin to “too many small calls.”

 Over-specified GraphQL queries lead to large aggregator fan-outs.

 Unbounded synchronous calls degrade concurrency in both cases.

B. Missing Observability

 Without request metrics, debugging performance issues or fine-tuning concurrency or
timeouts becomes guesswork.

XVIII. ORGANIZATIONAL READINESS
A. DevOps
Embrace cross-functional squads that can push changes frequently, maintain resilience patterns,
and observe results in real time.

B. API Governance
Provide guidelines on how each microservice or domain chooses communication patterns. This
reduces fragmentation and ensures standard provisioning of resilience features.

XIX. FUTURE DIRECTIONS
Service Mesh: Tools like Istio or Linkerd manage cross-cutting concerns (traffic routing, resiliency)
without embedding logic in microservices. This approach can unify circuit breakers and injection
of timeouts at the network layer.

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

170

A. GraphQL Federation
Multiple microservices can expose partial schemas, then unify into a single schema. Ensures
dynamic data composition for large organizations.

B. Binary Over REST
Some attempts to compress or binary-encode REST payloads (like Protocol Buffers over HTTP)
aim to combine REST’s familiarity with gRPC’s performance, though not fully mainstream.

XX. BEST PRACTICES AND IMPLEMENTATION GUIDELINES
A. Assess Use Case, for internal microservices with high throughput demands, gRPC can

drastically cut overhead. For front-end or external consumer scenarios, REST or GraphQL may
be more suitable.

B. Avoid Mixed Protocol Overhead, If the system is mostly gRPC internally, keep it consistent.
Exposing external endpoints can remain in REST.

C. Adopt Observability from the start, collecting request stats, latency distributions, and error
rates to refine configurations.

D. Limit Synchronous Depth, minimizing multi-hop synchronous calls reduces the chain-latency
effect and meltdown risk.

E. Continuous Tuning, as traffic scales, revisit concurrency controls, retry attempts, and the
choice of asynchronous flows.

XXI. CONCLUSION
Designing high-throughput microservices requires more than domain decomposition and
containerization. The communication strategy REST, gRPC, or GraphQL shapes how data flows
between services, how quickly requests complete, and how easily teams can maintain or evolve the
system. Each approach has definitive patterns that align with certain workloads:

 REST for simplicity and broad compatibility, but watch for overhead with textual payloads
and potential multiple calls.

 gRPC for internal, high-frequency or streaming calls, benefiting from binary encoding and
multiplexed connections.

 GraphQL for flexible front-end queries, especially when data from multiple sources must be
assembled, though paying special attention to potential aggregator overhead.

Simultaneously, the pitfalls like over-chattiness in REST or excessive aggregator logic in GraphQL
can hamper performance, while ignoring observability leaves teams blind to problems. The
synergy of resilient patterns (circuit breakers, short or asynchronous calls, minimal synchronous
chaining) also remains crucial for building robust throughput. With thorough planning, consistent
best practices, and iterative tuning, microservices can indeed deliver the scale and responsiveness
demanded by modern digital services.

International Journal of Core Engineering & Management

Volume-6, Issue-10, 2020 ISSN No: 2348-9510

171

REFERENCES
1. Fowler, M., “Microservices Resource Guide,” martinfowler.com, 2016.
2. Newman, S., Building Microservices, O’Reilly Media, 2015.
3. Kruchten, P., “Architectural Approaches in Distributed Systems,” IEEE Software, vol. 31, no. 5,

2014.
4. Netflix Tech Blog, “Lessons in Reactive Microservices,” 2016.
5. Pautasso, C. et al., “A Survey of REST and SOAP in the Wild,” ACM Computing Surveys, vol.

47, no. 2, 2014.
6. Gilt Tech Blog, “Scaling Microservices for E-Commerce,” 2017.
7. Lewis, J., “Over-Decomposition in Microservices,” martinfowler.com, 2016.
8. Brandolini, A., Introducing EventStorming, Leanpub, 2013.
9. Basiri, A. et al., “Reliability in Microservices: Patterns and Approaches,” ACMQueue, vol. 14,

no. 2, 2017.
10. Fowler, M., “Circuit Breaker Pattern,” martinfowler.com/articles/circuitBreaker, 2014.
11. Linkerd Documentation, https://linkerd.io/, 2018.
12. Spring Cloud Documentation, https://cloud.spring.io/spring-cloud-static/, 2019.
13. GraphQL.org, “GraphQL: A Query Language for APIs,” 2015.
14. G. Cockcroft, “Polyglot Communication for Microservices,” ACM DevOps Conf, 2016.
15. Molesky, J. and Sato, T., “DevOps in Distributed Systems,” IEEE Software, vol. 30, no. 3, 2013.
16. Chaos Monkey, “Testing Microservices in Production,” Netflix Tech Blog, 2015.
17. Narayanan, P., “High-Throughput Bidding with gRPC,” AdTech Conf, 2017.
18. Gilt Tech Blog, “Microservices Observability and Tuning,” 2017.
19. D. Ford et al., “Microservices Governance: Patterns and Pitfalls,” ACMQueue, vol. 15, no. 4,

2018.
20. GraphQL Foundation, “GraphQL in Large-Scale Media Platforms,” Case Study, 2019.

