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Abstract 

 
Real time health monitoring in biomedical applications is now possible through efficient usage 
of deep learning models on portable microcontrollers through edge AI. Edge AI is different from 
most preexisting AI systems that require massive cloud support for complex computations and 
analytics. It is most effective in healthcare since time is vital in treatment, and data must be 
safeguarded securely. Arduino, ESP32, Raspberry Pi Pico, and other microcontrollers serve as 
the main components of the Edge AI systems used in biomedical practice. These small and, low-
cost, low-power devices enable the use of complex AI methods on limited-featured hardware. 
Deep learning specialists also note that using techniques such as quantization, pruning, and 
model compression, deep learning models can be fine-tuned for microcontrollers without 
achieving a reduction in performance outcomes. This capability covers the ability to track and 
monitor an individual’s health status in real-time using wearable devices and portable 
diagnostic equipment, including the rate of heartbeat, respiration, and blood oxygen levels. The 
combination of Edge AI with the Internet of Things (IoT) takes advantage of this to allow 
communication between devices for full health analysis. Similarly, innovations in one’s 
microcontrollers and enhancements in model advancement procedures provide hope for 
extending the utilization of biomedical systems even to the neglected parts of the globe. This 
paper reviews the deployment workflow, assessing key issues and future trends of Edge AI 
while focusing on the importance of its application in the healthcare sector. Edge AI truly sets 
the stage for effective, efficient, and intelligent healthcare systems by successfully merging 
technology with reality. 

Keywords: Edge AI, Microcontrollers, Biomedical Applications, Deep Learning, Healthcare, 
Real-Time Monitoring, Optimization Techniques, Artificial Intelligence (AI), Model 
Deployment, Wearable Devices. 

 

I. INTRODUCTION  
Edge AI is another trend that has emerged in the new age of AI, where instead of linking 
everything to the cloud, data is processed on the device itself. Edge AI is the deployment of 
model algorithms on edge devices, including microcontrollers, sensors, and other resource-
scarce hardware. Different from other forms and types of artificial intelligence that require 
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computation and inference to take place in the cloud, edge AI operates at the periphery of the 
network. This transformation is major in settings where real-time processing is important, with 
low latency and high privacy. Edge AI integrates the advantages of both artificial intelligence 
and edge computing technologies. In essence, Edge AI enables devices to take charge of 
computing, analyzing data, making decisions, or performing tasks with no recourse to the cloud 
for frequent support. This decentralized strategy works to decrease the response time, increase 
stability, and strengthen the protection of users’ data by avoiding a constant exchange with 
other servers. 
Importantly for healthcare, Edge AI is changing how medical devices function. As it empowers 
timely decision-making at the edge, it paves the way for real-time health checks, immediate 
notifications, and self-operations during important contingencies. For instance, the smart 
wearable devices and compact form diagnostic tools that are integrated into Edge AI 
technology mean that patients can immediately get an idea of their health status, something that 
is especially beneficial in a critical healthcare situation or where the availability of donor 
resources is limited. Additionally, the resulting Edge AI minimizes the reliance on high internet 
speeds that can effectively bring the healthcare solutions to the doorsteps of patients located in 
even the rural regions. 
 

 
Figure 1: Combining Machine Learning and Edge Computing 

 
The benefits of Edge AI in healthcare are numerous and deep-seated. The feature of keeping 
data locally processed avoids delay, which is vital for apps like heartbeat rate and identifying 
falls among the elderly. Second, it provides better privacy as patient data remain confined to the 
smartphone and are never transmitted anywhere else. Last but not least, the implementability 
of Edge AI solutions on a large scale and with low costs drives the solutions’ applicability to 
multiple settings. HC Edge AI can be attributed directly to the contribution of microcontrollers. 
These are portable power-constrained computing devices optimized to perform limited tasks 
effectively. These microcontrollers include Arduino boards, ESP32, Raspberry Pi Pico, and 
others due to their popularity, low cost, energy saving, and versatile features of this elevator 
that make them more suitable for biomedical applications. 
Another strong prospect for microcontrollers is their low power use; they require 
proportionately less electricity than other microcomputers. This means that most of the 
equipment, like wearable and portable diagnostic devices used in healthcare, require long-
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lasting power and are rarely charged. Microcontrollers offer this potential, and it is guaranteed 
that they will work accurately all the time. Another important aspect is cost reconnoiter. While 
typical processors used in other types of AI systems are more complex and expensive, 
microcontrollers can be bought for a relatively low price, facilitating the creation of cost-
effective healthcare solutions. This makes it possible to extend best-practiced healthcare 
innovations, especially to the neediest societies. This aspect is equally important in biomedical 
applications of nanoparticles. Microcontroller-based devices are portable and small in size and 
can hence be built into a watch, a human implant, or portable diagnostic equipment. For 
instance, a wristband can be fitted with a microcontroller system that continuously and in real-
time detects a patient’s heartbeat rate and instantly notifies caregivers of any likely anomalies. 
Combining deep learning with Edge AI is revolutionizing the healthcare segment by presenting 
sophisticated solutions for analyzing the intricate existing data. Deep learning is a particular 
branch of AI that uses neural networks to identify the relationships between data points in large 
datasets. In the field of healthcare, deep learning models can diagnose diseases, examine 
images, and even read patients’ vital signs with a high degree of precision. For instance, CNNs 
can be used to analyze the electrocardiogram (ECG) signals for the identification of 
arrhythmias, whereas RNNs can be applied to predict trends in patients’ data. This means that 
with these models deployed on microcontrollers, real-time health monitoring becomes possible, 
including in situations that characterize low-resource health contexts. This advancement has 
enabled healthcare providers to deliver timely interventions and, in the process, improve 
patient outcomes enormously. 
This paper discusses the real-time biomedical application of efficient deep-learning models on 
microcontrollers in detail. Regarding digital devices such as Arduino, it delves into issues, 
approaches, and real-life applications of Edge AI in the healthcare sector. The purpose of this 
work is to present a set of recommendations to scholars and practitioners interested in 
advancing the approaches based on Edge AI to improve patients’ treatment. Edge AI holds the 
key to the implementation of intelligent healthcare systems with portability, efficiency, and cost 
optimization at its best. 
 
 

II. UNDERSTANDING EDGE AI AND MICROCONTROLLERS 
2.1 What is Edge AI? 

Edge AI can be described as the practice of running AI models on edge devices, including 
microcontrollers and sensors, where data is analyzed on the device itself without the need for 
the cloud (Merenda et al., 2020). This approach is different from a previously developed AI 
system that needs an external server or cloud to analyze the information. Specific attributes of 
Edge AI include low latency times, better energy management, and improved data privacy. As 
such, Edge AI helps run applications and services that require immediate response time and 
assurance that the data being used is stored locally on the device and not synched with any 
cloud database regularly. 
 
Conventional AI architectures normally rely on complex computing assets for model learning 
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and prediction activities. Nonetheless, Edge AI works within the confines of small hardware 
devices, including but not limited to memory space and the ability to process data. To 
accommodate such environments, specific measures such as model quantization and model 
compression are applied to render the models light and energy exigent (Nyati, 2018). Therefore, 
Edge AI can enable model deployment in scenarios where communication and computing 
ability are restricted, such as the continuous monitoring of patients’ health or using medical 
wearable technologies. 
 

 
Figure 2: Edge AI Overview 

 
2.2 Introduction to Microcontrollers 

Microcontrollers are small-sized system chips developed to perform set functions effectively. 
They act as the core of Edge AI since they allow small resource-constrained devices to compute 
and interact with other components, like sensors (WoldeMichael, 2018). Subsequently, utilizing 
microcontrollers in the context of Edge AI results in positive trends in costs, portability, and 
energy efficiency. For the same reason, they are best suited for real-time biomedical applications 
such as heart monitoring and respiratory rate measurement. They are familiar ones like 
Arduino, Raspberry Pi Pico, and ESP32, among others. All of these devices provide 
differentiated features for the specific Edge AI applications. For instance, Arduino is relatively 
easy to use and offers abundant community support, something that makes it even more 
suitable for rookies. Raspberry Pi Pico has better features that include the availability of two 
processing cores. At the same time, ESP32 comes with features like integrated Wi-Fi and 
Bluetooth that allow for wireless transfer of data in real-time. 
 
 

Microcontroller Processor Memory Connectivity 
Price 

(USD) 
Best Use Case 
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Arduino Nano 33 
BLE 

ARM Cortex-M4 256 KB Flash Bluetooth 20-25 Simple AI tasks (e.g., gesture recognition). 

Raspberry Pi Pico 
Dual ARM 

Cortex-M0+ 
2 MB Flash None 

04-
May 

Advanced processing (e.g., data 
preprocessing). 

ESP32 
Xtensa Dual-Core 

LX6 
520 KB 
SRAM 

Wi-Fi, 
Bluetooth 

06-Oct 
Wireless applications (e.g., IoT health 

monitoring). 

 
Table 1: Comparison of Popular Microcontrollers for AI Deployment 

2.3 Why Edge AI in Biomedical Applications? 
The healthcare industry is now experiencing adoption, especially in real-time monitoring with 
the Edge AI techniques. In the biomedical field, the first benefit of using Edge AI is certain: data 
latency is reduced. Such systems help process data locally and thus reduce time delays, which 
are used to access data from cloud-based servers (Sun et al., 2020). For instance, in cases like 
heart rate or glucose monitoring, fast responses definitely have a positive impact on the illness-
affected individual. Another important advantage is improved data privacy (Nyati, 2018). By 
inputting, processing, and storing electronic and patient-sensitive information at the local level, 
the problem of invasion and breach is controlled. This feature matches well with preventive 
measures in healthcare compliances like the Health Insurance Portability and Accountability 
Act (HIPAA), which requires particular measures to safeguard medical information. 
Further, Edge AI functioning can be offline, which is valuable for use in settings with poor 
connectivity or limited internet connectivity. Just like any other cloud-based system, cloud-
dependent systems are only efficient when the internet connection is reliable throughout the 
region. Edge devices, on the other hand, can work autonomously and continuously, so the 
monitoring and analysis of data do not stop. For instance, smartwatches that use 
microcontrollers and Edge AI can monitor patients’ vital signs on a real-time basis, including in 
zones where there is no network connectivity at all (Amin, & Hossain, 2020). Such capabilities 
make Edge AI a necessity for current and future biomedical applications, including wearable 
fitness trackers and more sophisticated diagnostic devices. This blend of low power 
consumption, real-time processing, and data privacy opens the door to mass deployment and 
efficient healthcare solutions. 

 
 

III. DEEP LEARNING MODELS FOR EDGE AI 
The incorporation of deep learning in edge devices, including microcontrollers, has now 
precipitated a new wave of solutions for scientific biomedical real-time applications. In the past, 
deep learning was often related to computationally intensive systems; however, with the recent 
achievements in model optimization and hardware design, deep learning can now be executed 
on resource-constrained devices (Gill, A. (2018). This section covers the native architectures of 
deep learning, the concerns and approaches for running such models on microcontrollers, the 
optimization methods available to them, and a field example of their use. 
 

3.1 Overview of Deep Learning Models 
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Specifically, deep learning is a branch of machine learning that uses artificial neural networks to 
process the data patterns existing in the information flow. Several architectures play a pivotal 
role in the deployment of deep learning models, particularly for Edge AI applications: 

3.1.1 Convolutional Neural Networks (CNNs): CNNs are particularly drawn to tackle 
spatial data and, therefore, are useful when dealing with image or video information 
(Zha et al., 2015). These networks use convolutional layers to identify features such 
as edge, shape, and texture in data, making them perform well in areas such as 
diagnosis by inference and gesture recognition. Due to their layered design, feature 
extraction can be accomplished with far fewer parameters than can fully connected 
networks, and thus, they are feasible in restricted platforms. 

 
Figure 3: An Example Convolutional Neural Networks 

 
3.1.2 Recurrent Neural Networks (RNNs): RNNs work well with sequential data input, 

either a time series or a text. Thus, by introducing loops into their construction, 
RNNs are capable of remembering the earlier inputs, which is particularly useful in 
interpreting tendencies in the variability of heartbeat rates or identifying pathologic 
features in ECG signals (Xue & Yu, 2021). Still, conventional RNNs may be 
computationally intensive and may be improved for integration with microcontroller 
systems. 

3.1.3 Long Short-Term Memory (LSTM) Networks: LSTM, especially, is a less general 
type of RNN that can solve the problem of long-term dependencies and gradients 
vanishing (Sherstinsky, 2020). Owing to their rather excellent performance in tasks 
such as speech recognition or physiological signals processing, they are ideal for 
real-time health monitoring procedures. 

Although these architectures look promising when deployed on microcontrollers, they are not 
without challenges. 
 

3.2 Limitations of Using Deep Learning on Microcontrollers 
Using deep learning models in microcontrollers is not a small task since they have limited 
resources. The main challenges include: 



 
International Journal of Core Engineering & Management 

Volume-7, Issue-01, 2022           ISSN No: 2348-9510 
 

144 

 

 

 
Figure 4: The limitations of deep learning 

 
3.2.1 Limited Memory: Typically used microcontrollers work with tens to thousands of 

times less memory, from several KiB of RAM to a few MiB, which is insufficient for 
feeding and working with large multidimensional neural networks. For instance, a 
simple CNN with a reasonable number of filters may need a memory size that could 
not fit in devices such as Arduino Uno or ESP32. 

3.2.2 Processing Power: Microcontrollers are different from GPUs or other intelligent AI 
accelerators in that the latter involve low-power CPUs designed to handle routine 
operations (Nyländen, 2018). Arithmetic operations like matrix multiplication or 
convolutions can be computationally expensive, and adding them anywhere in the 
process of model inference dilutes real-time responsiveness. 

3.2.3 Energy Efficiency: Energy use is always one of the main concerns, especially in 
biomedical applications, especially for portable or implantable devices. Analyzing 
massive data volumes using complex models on computational units with battery-
rechargeable energy sources substantially drains such batteries, reducing the 
systems' availability (Larminie & Lowry, 2012). 

Solving these problems necessitates advanced strategies to enhance and fine-tune deep learning 
for effective implementation. 
 

3.3 Model Optimization Techniques 
Several optimization techniques have been developed to tailor deep learning models for 
microcontroller compatibility without compromising performance: 

3.3.1 Quantization: Quantization minimizes the number of significant bits by limiting the 
weights and activations of the model to low-bit values, for example, to 8-bit integers 
(Vandersteegen et al., 2021). This approach reduces memory consumption and 
calculation time to the minimum optimal for the microcontroller to handle, which 
makes it perfect for microcontrollers. For instance, TensorFlow Lite Micro provides 
post-training quantization to reduce model size and boost velocity. 

3.3.2 Pruning: Reducing removes small-size weights within a neural network, making it 
smaller in size. Pruning reduces the size of a neural network. In this sense, while the 
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model is lighter as weights with insignificant participation are eliminated, accuracy 
is maintained. This is helpful, especially in CNNs with some of the filters that may 
not play much role in feature extraction. 

3.3.3 Model Compression: Methods such as knowledge distillation merge the large model 
into a smaller model by transferring knowledge. The smaller model is called the 
"student" and replicates the outputs of the larger "teacher" model. This allows the 
installation of lightweight networks with acceptable degradation levels of 
performance parameters. 

When used correctly, these strategies facilitate the utilization of deep learning on 
microcontrollers. The following case study illustrates this in reference to the use of a monitor to 
record heart rate. 
 

3.4 Case Study: Improving a CNN for Tracking Heart Rates 
One important application of current RHMS is continuous heart rate tracking, which may 
sometimes entail the use of proper algorithms for processing physiological signals. This work 
presents an overview of the measures implemented to prepare a CNN for real-time 
implementation on an Arduino Nano 33 BLE Sense. 

3.4.1 Model Selection: A lightweight CNN was chosen as PPG signals are captured by 
optical sensors. The initial model had three layers of convolution and two layers of 
full connection and contained 420k parameters (Ibtehaz, 2020). 

3.4.2 Quantization: To keep the floating point numbers to a minimum, post-training 
quantization was employed to convert the weights and the activations to 8-bit 
integers. This reduced the model size by about 75%, making it easy for it to fit in the 
Arduino Nano's 256 KB SRAM. 

3.4.3 Pruning: Moreover, it utilized the pruning technique to eliminate 40% of the 
network's weights, thereby decreasing the computational intensity while tolerating a 
small level of inaccuracy. The process of pruning required repeated fine-tuning to 
maintain the model's accuracy. 

3.4.4 Testing and Deployment: The optimized model was deployed using TensorFlow 
Lite Micro (Warden  & Situnayake, 2019). In testing, the model was said to offer 
labor of 150 milliseconds per inference, which makes it ideal for real-time 
monitoring. 
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Figure 5: Operation of TensorFlow 
 

3.5 Performance Evaluation: 
The final implementation also shows energy-efficient running through the system, which only 
uses 10 mW while constantly monitoring (Qiu et al., 2011). This also proved the proof of concept 
of the presented approach of developing deep learning models on microcontrollers for 
biomedically important tasks. 
Consequently, the choice of combining model optimization techniques with the tools for 
microcontroller deployment is discussed as a practical approach in Edge AI in this case study. 
When it comes to microcontroller deployment, though, which necessarily entails model 
optimization, deep learning models are still feasible. On resource scarcity issues, quantization, 
pruning, and model compression play a pivotal role in sorting out efficiency needs and 
performance (Ganesh et al., 2021). The above-mentioned heuristic strategies can prove to be 
valuable in the development of low-cost and real-time health monitors that are clearly scalable. 
The enhancement of the CNN-based HRM system serves as a perfect illustration of how Edge 
AI can revolutionize the biomedical industry and result in the development of more efficient 
and affordable approaches to increase the quality of people's lives. 

 
 
IV. DEPLOYMENT WORKFLOW 
Deep learning models for biomedical applications on microcontrollers consist of different steps, 
from choosing the correct hardware to using the model and debugging it in the field.  

4.1 Pre-deployment Preparation 
The preparation process is the most crucial as it involves assessing the environment in which 
the program is to be deployed, ensuring a smooth deployment process for the planning team. 

4.1.1 Choosing the Right Microcontroller: Microcontrollers are the central component of 
any Edge AI architecture because it is they that perform computations associated 
with AI. Choosing the right microcontroller is very important, and it involves several 
important facets, such as superior processing ability, massive storage, power 
consumption, and AI toolkit compatibility. These, among others, include Arduino 
Nano 33 BLE Sense, Raspberry Pi Pico, and ESP32. For biomedical applications, 
microcontrollers should also have the support of ADC to process the signal from 
biomedical sensors. For example, the Arduino Nano 33 BLE Sense has an NPU for AI 
processing, which makes it perfect for low-power health monitoring applications 
(Taivalsaari et al., 2021). On the other hand, the ESP32 is well renowned for its 
wireless communication functionality, which relays information to cloud storage for 
additional processing. 

Microcontroller Processor 
Memory 
(RAM) 

AI Framework 
Support 

Power 
Consumption 

Arduino Nano 33 BLE 
Sense 

ARM Cortex-M4 256 KB 
TensorFlow Lite 

Micro 
Low 
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Raspberry Pi Pico 
ARM Cortex-

M0+ 
264 KB 

MicroPython, 
TinyML 

Medium 

ESP32 
Xtensa Dual-

Core 
520 KB 

TensorFlow Lite 
Micro 

Medium 

Table 2: Comparison of Popular Microcontrollers for AI Deployment 
 

4.2 Training and Optimizing the Model 
Most of the deep learning models that are trained to run on microcontrollers must be small and 
compact. High-performance platforms in the training typically performed include, for example, 
GPUs, which can handle large input data sets (Wang et al., 2019). Once trained, the model is 
optimized using techniques such as: 

4.2.1 Quantization: Scales down model parameters from the generally used 32-bit floating 
point to 8-bit integers in order to reduce both memory and computation. 

4.2.2 Pruning: It reduces the number of units present in a neural network by removing 
parameters to decrease model complexity without a substantial impact on 
performance. 

4.2.3 Model Compression: Cuts down on computational needs by adding pruning and 
quantization all in one. 
 

4.3 Tools for Deployment 
Several tools are available to assist in deploying AI models on microcontrollers: 

4.3.1 TensorFlow Lite Micro: TensorFlow Lite Micro has been optimized to run on 
resource-scarce IoT devices. 

4.3.2 Edge Impulse: An intelligent development platform for building, training, and 
deploying AI models directly onto microcontrollers. 

4.3.3 TinyML Frameworks: A set of MicroPython tools and libraries and TinyML for 
Arduino to ease the integration process. 

These tools offer inbuilt libraries and automated processes to help developers integrate Edge AI 
into their devices easier. 
 

4.4 Integrating AI models on microcontrollers 
After the model is calibrated and fine-tuned, the final model is then deployed into the 
microcontroller domain. 
In this case, TensorFlow Lite Micro for Model Integration is employed. 
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Figure 6: Microcontrollers for Machine Learning and AI 

 
4.4.1 TensorFlow Lite Micro is a flexible library that enables the functioning of artificial 

intelligence on devices with low processing power. The process typically involves: 
4.4.2 Converting the Model: The trained deep learning model is then exported to 

TensorFlow Lite format with the extension '.tflite' (David et al., 2020). 
4.4.3 Integrating with Firmware: The converted model is then compiled into the 

microcontroller's firmware using the TensorFlow Lite Micro library. 
4.4.4 Loading the Model: The firmware is then loaded into the microcontroller for 

processing and execution. 
 

• Code Example: Loading a Model onto Arduino 
#include "TensorFlowLite.h" 
 
// Include the model 
extern const unsigned char model[]; 
extern const int model_len; 
 
// TensorFlow Lite library objects 
tflite::MicroErrorReporter micro_error_reporter; 
tflite::ErrorReporter* error_reporter = &micro_error_reporter; 
 
// Memory allocation for the TensorFlow Lite model 
constexpr int kTensorArenaSize = 1024; 
uint8_t tensor_arena[kTensorArenaSize]; 
 
// Setup TensorFlow Lite interpreter 
void setup() { 
  Serial.begin(115200); 
 
  // Initialize TensorFlow Lite components 
  tflite::MicroInterpreter interpreter(model, tensor_arena, kTensorArenaSize, 
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error_reporter); 
  Serial.println("Model loaded successfully"); 
} 
 
void loop() { 
  // Your inference logic here 
} 

This code provides a fundamental structure for uploading a TensorFlow Lite model 
on Arduino. Developers can extend it to perform real-time health monitoring using 
biomedical sensors 
 

4.5 Testing and Debugging 
It is also advisable to deploy the developed AI model into a real-world environment and 
troubleshoot when there are errors or bugs. 

4.5.1 Evaluating Performance on Real-World Data 
Online and offline performance fully entails feeding the microcontroller with 
appropriate data derived from the biomedical sensors. Key metrics include: 

• Inference Time: The mapping is the delay between the input received and the 
subsequent generation of a prediction. 

• Accuracy: Refers to the ability of the model to perform well when estimated with 
unseen data samples. 

• Power Consumption: Performance of the system with respect to energy 
efficiency when the system is in operation for an extended period (Dincer & 
Rosen, 1999). 

For example, researchers assume the heart rate monitoring system is tested using data from a 
photoplethysmograph (PPG) sensor. The results can be analyzed to determine whether the 
model allows accurate predictions in real-time. 

4.5.2 Common Troubleshooting Techniques 
Developers may encounter issues such as: 

• Memory Overflow: This can be fixed either by optimizing the model even 
further or by allocating more memory for the task in the firmware. 

• Latency Issues: The problem might not occur if the model is smaller or if some 
calculations are made easier. 

• Sensor Noise: Signal preprocessing techniques, namely filtering, can help to 
avoid this problem. 
 

4.6 Workflow for Deploying AI Models on Microcontrollers 
Employing the chart of the stages of the model's deployment on microcontrollers provides a 
clear and logical display of the process, with a focus on the sequence of the actions required for 
successful deployment. The solution refines each step so that the process results are efficient 
and optimized for application, especially in biomedical monitoring systems. 
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Figure 7: Workflow for Deploying a Neural Network 

 
Training and optimizing the model is the first process in the workflow and is done in a high-
performance system. This step includes feeding the model to larger datasets using graphical 
processors or other powerful hardware. To make identifiers learn correctly, biomedical data, for 
instance, the heart signal or respiratory patterns, are passed through the layers (Faust et al., 
2018). Optimization comes next where ways such as quantization, pruning, and model 
compression are used to minimize the size and the computational resources of the model for 
microcontroller use. 
Subsequently, the model is converted to TensorFlow Lite, which is more compatible with 
Microcontroller environments. The architecture of the model is reduced, and most 
computations are simplified in TensorFlow Lite to make it work on devices' limited hardware. 
This step involves converting the trained model into a form consumable by libraries such as 
TensorFlow Lite Micro. 
The third step is the development of microcontroller firmware based on the presented model. 
During this phase, the TensorFlow Lite model of the neural network is compiled and 
transferred to the microcontroller using libraries such as TensorFlow Lite Micro or Edge 
Impulse. The integration also helps to enable the microcontroller to communicate with the 
model and perform inferences in real time (Novac et al., 2021). Programmers create firmware to 
link the AI model with the input sensors and the output devices to gain real-world applications 
including, yet not limited to, health monitoring. 
The last process is to cross-check and validate the system's functionalities by using actual or real 
data. The predictions are made using an artificial intelligence model in collaboration with the 
live biomedical signals from sensors that are processed by the microcontroller. Developers 
quantify the system to assess how efficiently it supports the required functions by fixing the 
accuracy, time to produce an inference, and energy utilization required (Lee & Brooks, 2006). 
Ad hoc testing checks for latent bugs to eliminate them through trial and error testing 
encounters such as memory overflow, latency, and sensor noise. Some of the methods used are 
signal preprocessing and firmware optimization to improve the dependability and efficacy of 
the system. This workflow ensures that the deployment of models in microcontrollers is 
structured, thereby making it easier to employ AI models that may be pivotal in high 
applications such as real-time health monitoring. This chart helps to explain complicated 
procedures and is best used as a guide in developing and researching situations. 
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Figure 8: An Overview of Workflow for Deploying AI Models on Microcontrollers 
 

 
V. REAL-TIME HEALTH MONITORING APPLICATIONS 

5.1 Overview of Health Monitoring Systems 
Over the last couple of years, the healthcare domain has shifted from a reactive monitoring 
system to a more proactive health monitoring system. These systems are put in place to monitor 
physiological parameters on a consistent basis and provide instantaneous information to the 
patient and caregivers. Real-time monitoring also increases the chances of identifying chronic 
diseases, cutting on hospitalization, and offering holistic solutions to people’s health needs 
(Valero-Ramon et al., 2020). Health has to be checked frequently in humans with chronic 
diseases, including cardiovascular diseases, diabetes, and respiratory issues. Wearable devices 
and microcontroller-based systems, in particular, can help gather enough data on a patient’s 
state so that it can be analyzed in real time and useful actions to be taken at the earliest 
opportunity, leading to the saving of many lives. For instance, a constant heart rate check can 
analyze arrhythmias, while a constant oxygen level analysis can alert patients of hypoxemia. All 
these developments are driven by Edge AI, where most of the computations are processed 
within the device rather than through clouds, thus making proceedings faster, private, and 
efficient in terms of power usage. 
 

5.2 Biomedical Applications 
5.2.1 Heart Rate Monitoring: Real-time health systems are widely used in utilizing 

information from Physiological sensors, and one of the most commonly used 
applications is in using the data collected by Heart rate sensors. Some of the 
conventional methods of monitoring include Holter monitors, which prove to be 
awkward and, therefore, can only be used for a short time. These limitations are, 
however, overcome by Edge-AI wearables that incorporate PPG and ECG sensors 
with microcontrollers. In Edge AI, deep learning models are embedded in 
microcontrollers to process raw data gathered from PPG sensors in real-time 
(Alessandrini et al., 2021). They are capable of identifying arrhythmias and counting 
things like HRV, which is used to determine stress and other cardiovascular factors. 
For example, when using lightweight neural networks pruned and quantized for 
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operation in microcontrollers, such as Arduino Nano 33 BLE Sense, it becomes 
possible to process ECG signals in real time. 

5.2.2 Respiratory Rate Monitoring: Respiratory rates can help diagnose conditions such 
as asthma, COPD, or pneumonia and assess them during management. Current 
methods, such as spirometry and manual counts, are usually performed in clinical 
settings and involve human labor. In other environments, Edge AI enables constant 
respiratory monitoring. Another physiological parameter is the respiratory rate 
(Greco et al., 2021). It can be recorded by automatic wearable devices having an 
accelerometer, gyroscope, RFID sensors, or respiratory inductance plethysmography. 
These models are implemented on dialects used in edge AI that work on these 
microcontrollers to analyze sensor data to detect breathing patterns, including 
tachypnea or apnea. For instance, by incorporating an Arduino microelectronic with 
a chest-worn sensor, data can be processed at the edge in order to detect 
abnormalities and hence notify users or medical practitioners promptly in case of 
any. 

5.2.3 Blood Oxygen Level Detection: Continuous SpO2 (blood oxygen saturation) 
monitoring has become increasingly important lately, especially after the outbreak of 
the COVID-19 virus (Shah et al., 2020). Hypoxaemia can be an early sign of severe 
respiratory compromise, and thus, early identification is important. The possibility 
of utilizing portable devices with Edge AI means that SpO2 can be persistently 
monitored, in contrast to pulse oximeters, where it is only occasionally checked. This 
technology also enables portable devices such as microcontrollers and reflectance-
based PPG sensors to monitor blood oxygen levels by analyzing the absorbance level 
of the corresponding tissue. In these devices, Edge AI algorithms local to these 
gadgets conduct computations to determine SpO2 and enable users to monitor their 
oxygen levels while exercising, during illness, or while sleeping. The present 
application is especially useful for people with diseases such as sleep apnea or 
chronic lung disorders. 
 

5.3 Case Study: Deploying an AI-Based Heart Rate Monitor 
5.3.1 Implementation Details: Real-time heart rate monitoring through Edge AI includes 

sensors, microcontrollers, and efficient AI algorithms. In this case study, an Arduino 
33 BLE Nano sensor is connected to a pulse oximetry sensor that records the number 
of heartbeats per minute. The steps for implementation are as follows: 

• Sensor Integration: An optical PPG sensor is interfaced with the microcontroller 
to acquire raw photo-plethysmographic signals, which measure blood volume 
variations in the microvascular tissue bed (Moreno Sánchez, 2015). 

• Data Preprocessing: It then filters the raw signals and enhanced signals by 
reducing noise during motion or effects of light variation. 

• Model Deployment: Empirically, a lightweight convolutional neural network 
(CNN) model is proposed to perform heart rate prediction, utilizing TensorFlow 
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Lite for optimization with heart rate datasets (He et al., 2018). This optimized 
model is then implemented in the Arduino microcontroller. 

• Real-Time Analysis: The microcontroller analyzes sensor data using the 
deployed model. It computes heart rate in beats per minute (BPMs) and 
identifies other abnormalities, such as arrhythmia. 

• Output and Alerts: The measurements are shown in numerations on an LCD 
screen, and alarms are given if the pattern changes. 

 
Figure 9: Advanced artificial intelligence in heart rate and blood pressure monitoring for stress 

management 
 

5.3.2 Code Snippet: Processing Real-Time Sensor Data 
Below is an example of Python-based TensorFlow Lite Micro code used to deploy a heart rate 
monitoring model: 

python 
#include <Arduino.h> 
#include <TensorFlowLite.h> 
#include "model.h"  // Include the trained model header 
// Initialize the PPG sensor and TensorFlow Lite model 
void setup() { 
    Serial.begin(9600); 
    setupPPGSensor();  // Function to initialize PPG sensor 
    tflite::InitializeTensorFlowLite(); } 
// Real-time data processing loop 
void loop() { 
    float sensorData = readPPGData();  // Function to read PPG sensor data 
    float result = predictHeartRate(sensorData);  // TensorFlow Lite prediction 
    Serial.print("Heart Rate (BPM): "); 
    Serial.println(result); 
    delay(1000);} 

This implementation demonstrates how Edge AI models can process real-time physiological 
data on resource-constrained devices 
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5.4 Future Trends in Real-Time Monitoring 
5.4.1 Wearable Devices Powered by Edge AI: Smartwatches are also changing with the 

implementation of Edge AI to create new forms of real-time health monitoring. The 
next generation of wearables will be compact, highly intelligent, and power-efficient 
devices capable of measuring a number of physiological parameters concurrently 
(Seneviratne et al., 2017). For example, next-generation smartwatches and fitness 
trackers could have multiple machine-learning algorithms for multimodal analysis, 
fusing heart rate, SpO2, and respiratory rate. 

5.4.2 Integration with IoT and Telemedicine: Combined with Edge AI and the Internet of 
Things, it is possible to create progressively more sophisticated health monitoring 
systems. The IoT-endpoint edge AI devices can relay the health data to the cloud-
level systems for further processing and sharing with physicians or surgeons. This 
integration improves telemedicine and offers precise distant consults and 
individualized treatment based on true real-time data. 

5.4.3 Advancements in Sensor Technologies: Continuous advancements towards better 
sensor technologies are pushing the development of better wearable devices. The 
comfort and durability of the sensors used are a matter of ongoing research and 
development, and there is ongoing work to develop flexible and biocompatible 
sensors for long-term applications (Liu et al., 2018). Further, the association of 
heterogenous multiple sensors in smart environments yields rich datasets for the 
training and execution of Edge AI models, enhancing the accuracy of health 
monitoring applications. 

5.4.4 AI for Predictive Analytics: The applications of Future Edge AI in health care may 
include preventive health care. This means identifying a health condition such that it 
can be treated even before symptoms begin to show. This can potentially prevent 
outcomes like Cardiac Arrhythmias or Asthma attacks through insights generated by 
Edge AI models on real-time data patterns. 

 
 

VI. ADVANTAGES AND CHALLENGES OF USING EDGE AI IN HEALTHCARE 
Decision-edge AI has become a revolutionary solution in healthcare, with substantial 
improvements in monitoring, diagnostics, and patients. Nevertheless, it also raises certain 
issues when implemented. Based on the above findings, this section seeks to discuss the major 
opportunities and main issues regarding Edge AI in biomedical. 

6.1 Advantages of Edge AI in Healthcare  
6.1.1 Scalability: Another advantage of Edge AI is that it is designed to be scalable. The 

application of edge computing devices such as microcontrollers and IoT sensors is 
mobile. It can be placed in many different locations, thereby allowing comprehensive 
health monitoring across the population without the need for extensive physical 
infrastructure. This factor also comes in handy when it comes to large areas where 
special well-served facilities are not well served. For instance, as portable devices, 
intelligent gadgets can continuously assess the clients' status and lessen the load on 
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health care facilities as well as broaden access to medical care. Furthermore, the 
concept of Edge AI also has a perspective in relation to the growth of the 
individualized approach to treatment (Patel et al., 2009). With the support of devices 
capable of local AI computations, healthcare providers can accumulate and analyze 
patient-specific data permanently, increasing the efficacy of the interventions 
performed. 

6.1.2 Cost-Efficiency: Edge AI deploys intelligence at the perimeters away from 
centralized servers and the cloud to cut data transportation and internet bandwidth 
costs. This approach is important for the provision of health monitoring solutions in 
low-resource environments due to its affordability. Boards such as Arduino and 
ESP32, with the inclusion of intelligent features, are relatively cheap to allow for 
intelligent health monitoring functionalities (Aghenta, & Iqbal, 2019). Furthermore, 
Edge AI minimizes healthcare facilities' expenses since they can run the network 
independently of extensive IT help. Through timely diagnosis of illnesses and 
reduction in hospitalization due to complications of chronic diseases, there are 
reasonable costs that healthcare organizations can lower. 

6.1.3 Enhanced Patient Outcomes: The present use of Edge AI ensures that the devices 
are capable of handling data locally, which is essential in healthcare since response 
has to be quick. For instance, the Smartwatch with Edge AI can identify a change in 
the client's heart rate, such as an abnormal heart rhythm or a low oxygen saturation 
rate, and notify caregivers in real-time. Such close contact can avert dangerous 
consequences to one's health and, in some cases, death. In addition, Edge AI protects 
the patient's data privacy by reducing the flow of the patient's personal and health 
reports to other servers. By processing data locally, it aligns itself with provisions of 
strict laws such as HIPAA and GDPR, and staff and patients trust the facilities 
(Determann, 2019). 

 
Figure 10: Benefits of Artificial Intelligence in Healthcare 

 
6.2 Challenges of Using Edge AI in Healthcare 
6.2.1 Limited Hardware Resources: Smart sensors, microcontrollers, and other edge 

devices are limited in terms of computational power, memory, and energy resources. 
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These limitations make it rather difficult to traverse such deep-learning models 
directly on these devices. For instance, recent models for biomedical imaging or 
signal processing may have highly demanding computations that cannot be 
executed in microcontrollers (Alcaín et al., 2021). To minimize this, developers rely 
on a variety of optimization strategies, such as quantizing the model, pruning, and 
model compression. Although these approaches can optimize the model and the 
computation needed, they may do so at the expense of model efficiency. 

6.2.2 Maintaining Model Accuracy: One major challenge presented by Edge AI systems is 
that the field exposes how deep learning models lose their accuracy when 
implemented in devices with low computational power. In the process of 
quantization or compression, optimized models may lose precision even though 
they are lightweight. For instance, decision-making could mean a precision 
reduction of a model from the high precision level of a 32-bit floating point to an 8-
bit integer, which will see the level of accuracy in predictions drop (Brewer 1995). 
Further, due to variability in the biomedical data and diversification of patient 
demographic range, environment conditions, and sensor standards, the model fails 
to generalize. The reliability of an AI system across multiple contexts will only be as 
good as the testing done before its rollout and subsequent model updates. 

 
Figure 11: AI implementation challenges in healthcare 

 
6.2.3 Maintaining Model Accuracy: The main concerns of the healthcare ecosystem are 

the various types of devices and data formats, which make it complicated to achieve 
the necessary level of interoperability. The goals of the clinically deployed Edge AI 
systems include that these systems should work with currently existing medical 
devices, EHRs, and IoT systems (Rahmani et al., 2018). Nevertheless, the absence of a 
set of guidelines makes this integration challenging in most cases, thereby leading to 
problems such as the formation of isolated data structures. Based on the current 
nature of the wetware, it has become crucial for developers to pay attention to 
building open and friendly interfaces that enable systems to interact with many 
devices and platforms. This entails using common protocols such as HL7 FHIR for 
the exchange of health data and supporting the use of more than one type of sensor. 

6.2.4 Energy Constraints: Healthcare applications require data to be processed at edge 
devices, which are predominantly battery-operated; hence ene, energy consumption 
is usually a paramount factor. Uninterrupted data processing and ongoing AI 
calculations will consume the power in the device, leading to shorter time between 



 
International Journal of Core Engineering & Management 

Volume-7, Issue-01, 2022           ISSN No: 2348-9510 
 

157 

 

charges, which makes it unsuitable for some continuous monitoring use cases 
(Pramanik et al., 2019). For instance, products such as wearable devices for 
measuring heart rate or blood oxygen levels require a balance between 
computational requirements with energy consumption to meet the need for 
continuous operation. New technologies, including deep low-power AI algorithms 
and energy catching and storage, are solving the problem of reducing power 
consumption. As pointed out earlier, these developments are crucial in supporting 
the deployment of sustainable Edge AI systems in healthcare. 
 

Aspect Advantages Challenges 

Scalability 

Enables widespread 
deployment and personalized 

care. 

Requires significant initial 
investment for device setup. 

Cost-Efficiency 
Reduces reliance on expensive 

cloud services. 
Limited by the affordability of 

advanced microcontrollers. 

Enhanced 
Outcomes 

Provides rapid response times 
and real-time monitoring. 

May face accuracy issues in 
optimized models. 

Privacy and 
Security 

Processes data locally, 
ensuring compliance with 

regulations. 

Risk of local device breaches if not 
adequately secured. 

Energy Efficiency 
Can operate in low-power 

settings. 
Energy constraints limit long-term 

usability. 

Table 3: Pros and Cons of Edge AI in Biomedical Applications 
 

6.3 Future Directions to Overcome Challenges 
The present study has shown that Edge AI is integral to healthcare, and the potential of 
overcoming the challenges identified is feasible through a collaborative approach with 
various fields. Lack of resources can be tackled through advances in hardware design, 
for example through the incorporation of AI-specific microcontrollers on the chips. At 
the same time, improvements in software optimization such as NAS, as well as new 
trends like federated learning, help to make models more efficient, yet not less accurate 
(Park et al., 2015). Cooperation among all parties in relation to research, clinical practice, 
and policy development is also important. Aligning the practices for data exchange and 
device communication will help integrate Edge AI systems in healthcare settings. In 
addition, appropriate investments in developer education and training can help 
introduce innovative solutions. 
 
 

VII. FUTURE OF EDGE AI IN BIOMEDICAL APPLICATIONS 
Biomedical applications with Edge AI integration also suggest how biomedicine in general and 
healthcare in particular may be transformed into intelligent, personalized, real-time, and 
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efficient approaches. This shift is informed by new trends and possible developments that hold 
kinetic possibilities in the innovation of health technology. 

7.1 Emerging Trends 
7.1.1 AI-Enabled Personalized Healthcare: Another area that has the most potential for 

Edge AI is the healthcare sector. Leveraging AI algorithms on the edge devices helps 
the medical systems to tailor treatment to the patient. Devices using microcontrollers 
for various wearable applications can also analyze data from body signals 
instantaneously, including heart rate, blood pressure, and glucose levels (Dias & 
Cunha, (2018). It also avoids overly generalized interpretations; instead, the findings 
are prompt to inform context-specific action without requiring cloud support. For 
instance, a patient with diabetes can wear an Edge AI wearable glucose monitor that, 
in addition to monitoring the patient's glucose level in real-time, offers the patient a 
nutrition and dosing plan. Incorporations such as these make method delivery more 
attentive and enhance treatment efficacy, thereby increasing patient compliance. 

 
Figure 12: Artificial Intelligence (AI) in Healthcare 

 
7.1.2 Integration with IoT for Smarter Health Solutions: Edge AI is fast transforming 

into an essential part of IoT elements, thus producing a well-connected environment. 
This integration makes it possible for the MD to work in cooperation with other 
devices so that a patient's health can be viewed holistically. For example, an IoT-
based health monitoring system may combine the data from a Watch, Sleep tracker, 
and Heart rate monitor to give an all-encompassing picture of health (Farahani et al., 
2018). Edge AI also reduces the time required for the data to be transmitted to 
centralized servers, which is an essential feature given that it reduces latency while 
maintaining the data's security. It is forecasted that with the advancement of IoT 
technology, smart healthcare systems will be developed where devices diagnose 
abnormalities and report to healthcare providers. 

 
 
 

7.2 Potential Advancements 
7.2.1 Improved Model Optimization Techniques: Nevertheless, using deep learning 

models on microcontrollers represents a major challenge because they need to be 
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optimized for hardware limitations. In the last couple of years, if it is possible to 
quantify the model, prune the model, or distill the model, the size and 
computational power can be reduced significantly without greatly affecting the 
model's accuracy (Kumar, 2019). Future advancements in these fields are anticipated 
to open the outlook for implementing more elaborate models for further distributed 
devices. Other students are working on more extended forms of intelligent adaptive 
learning that can be adapted based on usage patterns. These improvements will 
enable the utilization of highly developed AI algorithms in complex and low-power 
ML microcontrollers for biomedical applications. 

7.2.2 Enhanced Microcontroller Capabilities: Over recent years, microcontrollers have 
become more advanced in terms of computational power and energy. Some current 
examples of specific microcontrollers for AI are Arduino Portenta H7 and Raspberry 
Pi Pico W. These devices are empowered with a complex set of processors and 
specific accelerators for ML operations. Subsequent generations of microcontrollers 
include, for instance, on-chip AI processing, longer battery duration, and additional 
connectivity interfaces (Benini et al., 2006). These improvements will make it 
possible to implement global healthcare solutions with the help of AI technologies in 
problem areas, including remote or poorly developed regions of the world, 
providing great demand for quality medical care for the population. 

 
 

VIII. PREDICTED GROWTH OF EDGE AI IN HEALTHCARE 
Over the next decade, the usage of Edge AI in healthcare will likely grow exponentially. 
Stakeholders in different markets have estimated that the global Edge AI market will reach $1.3 
billion in the current year and $8.3 billion in the year 2032, and healthcare is the key sector 
driving demand (Padilla et al., 2019). The need for real-time health monitoring, the rise in cases 
of chronic illnesses, and the enhancements in AI hardware and software drive the growth of AI 
technologies in healthcare. Their reference to the 'future 'has a very bright future for Edge AI 
applied to biomedical purposes supported by substantial technological development and the 
emergence of various sorts of healthcare breakthroughs. This paper enlarged how, through 
customization of care delivery, improving the IoT connection, and overcoming the challenges of 
hardware restraint, Edge AI is bound to revolutionize the healthcare sector. These 
advancements are beneficial to patients and, indeed, provide the foundation for making the 
existing healthcare system more effective, available, and fair. 
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Figure 13: Prediction of Market Size & Trends of Global Edge Computing in Healthcare 

 
 

IX. CONCLUSION 
The adoption of Edge AI in biomedical applications is the turning point of the healthcare 
industry in delivering and perceiving healthcare. This technology allows data to be processed 
on edge devices such as microcontrollers at the same time so that it reduces latency while 
ensuring data privacy at the same time, not forgetting the aspect of cost. In contrast, Edge AI 
allows health monitoring devices to perform the analysis locally, promising less latency and 
faster decision-making a crucial aspect in emergency and constant health surveillance. Edge AI 
is most remembered for improving individual focus in the treatment course. By implementing 
efficient deep learning architectures within microcontrollers, wearable devices, and diagnosing 
tools, healthcare givers will be in a position to provide intervention. It serves to create 
personalized and timely delivery of health care needs coupled with the right data to enhance 
patient success. For instance, real-time measurement of the rate of heartbeat and glucose level 
enables people to respond to chronic diseases despite being stationed in rural or regions with 
low-internet infrastructure. Furthermore, the mobile and energy characteristics of 
microcontrollers enhance the extent to which they can be utilized in biomedical applications. 
For instance, the Arduino Nano 33 BLE and ESP32 microcontrollers are particularly effective in 
healthcare applications because of their low power consumption and relatively low cost. Such 
devices can ensure that portable, wearable, and sizeable diagnostics equipment is made 
available to populations. It is widely used for tracking respiratory rates and blood oxygen level 
analysis, and Edge AI has time and again shown the world how it can revolutionize healthcare. 
Several difficulties are still present in the use of Edge AI in biomedical contexts. These factors of 
computational hardware impose model optimization requirements being restricted by memory 
size and computational and energy capacities. Quantization, pruning, and other related 
techniques are some of the most crucial steps needed to ensure AI models remain compact 
enough for the microcontroller. Moreover, the integration of the Edge AI systems with the 
current infrastructure of the healthcare system has not been an easy task yet. These issues thus 
need to be solved to further advance hardware design solutions, software solutions, and 
standardization endeavors in the future. In the future, better chips for Edge AI and better 
methods of optimization will open more opportunities in the health sector. Developing more 
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advanced microcontrollers and better algorithms to improve the current AI will make it 
possible to train and deploy accurate models in resource-limited gadgets. Moreover, Edge AI, 
when combined with IoT, will definitely create optimized healthcare systems to deliver better 
and proactive techniques for consistent monitoring and care from remote locations. The main 
strengthening is that to implement the best-edge AI in biomedical applications, researchers, 
developers, and interested stakeholders have to work hand in hand. Education, research, and 
infrastructure expenditure will propel this innovative technology to lay foundations proactively 
to reach everyone. Edge AI is the key to the further development of the healthcare system, 
where the focus is on constant movement towards enhanced quality of services provided to 
patients and the overall effectiveness of the process. It will further evolve surely to complete the 
favorable change in the environment of health care. 
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