
 
International Journal of Core Engineering & Management 

Volume-7, Issue-12, 2024           ISSN No: 2348-9510 
 

287 

 

EDGE AI FOR FALL DETECTION: EVALUATING AI MODELS ON MOBIFALL FOR 
REAL-WORLD USE 

 
Dharmitha Ajerla 

Seattle, United States 
dharmitha.ajerla@gmail.com 

 

 
Abstract 

 
This paper presents a comparative analysis of deep learning models for fall detection, focusing on 
their accuracy, resource efficiency, and deployment feasibility for edge devices. Leveraging the 
MobiFall dataset, we evaluate state-of-the-art models, including ConvLSTM with Exponential 
Smoothing Forecasting (ESF), CABMNet (a hybrid CNN-BiLSTM architecture with attention 
mechanisms), a denoising LSTM-based Convolutional Variational Autoencoder (CVAE), and 
FedVAE (a federated learning framework). Each model is assessed based on its ability to balance 
computational efficiency with detection performance. Our findings highlight trade-offs between 
model complexity and resource constraints, with the denoising CVAE emerging as the most 
deployment-ready for wearable devices due to its lightweight architecture and minimal reliance 
on labeled data. In contrast, models like CABMNet achieve higher accuracy but at the cost of 
increased computational overhead. The study concludes with recommendations for future 
research, emphasizing the need for lightweight models, explainable AI (XAI), and real-world 
validation to improve the practicality and scalability of fall detection systems. 
 
Index Terms— Fall Detection, Deep Learning, Convolutional Neural Networks (CNNs), Long 
Short-Term Memory (LSTM), Attention Mechanisms, Variational Autoencoders (VAE), 
Unsupervised Learning, Resource-Constrained Devices, Wearable Technology, Federated Learning, 
Explainable AI (XAI), Remote Patient Monitoring (RPM) 
 
 

I. INTRODUCTION 
Falls represent a significant global health challenge, ranking as the second leading cause of 
unintentional injury deaths worldwide. Each year, approximately 37.3 million falls require medical 
intervention [1]. According to the Global Burden of Diseases Study, falls rank as the 18th leading 
cause of disability-adjusted life years [2]. While the burden of falls is most pronounced among 
older adults—where they are the leading cause of injury-related deaths for individuals aged 70 
and above—children also represent a high-risk group, with falls accounting for the majority of 
recorded injuries in several studies. This underscores the urgent need for targeted interventions 
across all age groups to address fall-related injuries more effectively [3]. 
 
Over the past decade, extensive research has focused on fall detection systems, ranging from 
traditional machine learning models to advanced deep learning networks. In previous work, we 
proposed a real-time patient monitoring framework for fall detection, which demonstrated the 
potential for early and accurate detection using wearable devices [5]. Building on this foundation, 
this paper delves deeper into edge AI models, which offer faster decision-making and significantly 
reduced reliance on cloud-based resources. Edge AI is increasingly recognized as a transformative 
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paradigm for personalized healthcare, enabling real-time and efficient monitoring solutions [5][6]. 
Training these edge AI models requires large and diverse datasets. However, falls are 
unpredictable events, making it challenging to create balanced datasets with sufficient information 
for effective training. Researchers often rely on publicly available datasets to address this 
limitation. Among these, the MobiFall dataset stands out as a widely used and recognized 
benchmark for fall detection models due to its extensive and varied motion data collected using 
wearable sensors.[4] It includes recordings of both daily activities and fall incidents as shown in 
Table 1, providing a realistic and challenging setting for evaluating the accuracy and robustness of 
fall detection models. Its comprehensive nature and accessibility make it a valuable resource for 
researchers to compare and validate different algorithms under consistent experimental 
conditions. In this study, the MobiFall dataset was utilized to ensure fair and reliable comparisons 
among the edge AI models analyzed. 
 
Existing studies in literature often compare models trained on different datasets, making it difficult 
to determine the factors contributing to a model’s superior performance. This highlights the need 
for a comparative analysis of models using standardized metrics and a common dataset, such as 
MobiFall. These models should be evaluated using a comprehensive framework that considers 
deployment-relevant factors such as resource efficiency, robustness, and interpretability. This 
research aims to compare various deep learning fall detection models using the MobiFall dataset. 
The evaluation will span multiple deployment-relevant metrics, including performance, 
robustness, interpretability, and resource efficiency. The findings will provide actionable insights 
for selecting or designing models for edge AI applications in fall detection and will contribute to 
advancing real-time healthcare monitoring solutions. 
 
 

II. METHODOLOGY 
To ensure a fair and consistent comparison of techniques, this study utilized the widely recognized 
and highly cited MobiFall dataset, developed by Vavoulas et al. [4]. This dataset includes four 
distinct types of falls and nine Activities of Daily Living (ADLs), recorded from 57 participants in 
over 2,500 trials using a smartphone. The MobiFall dataset provides a comprehensive benchmark, 
enabling the evaluation of fall detection models in realistic and diverse scenarios. 
 
The dataset encompasses the following fall scenarios and ADLs (see Table 1 for details) – 
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Table-1. Falls and activities of daily living (adls) recorded in the mobifall dataset (vavoulas et al. 
[4]) 

 

Activity Description Trails Duration 

Forward-Lying 
Forward fall with hands 
cushioning the impact 

3 10s 

Forward-Knees-
Lying 

Forward fall with knees 
hitting the ground first 

3 10s 

Sideward-lying Sideways fall with bent legs 3 10s 

Back-sitting-chair 
Backward fall while 

attempting to sit in a chair 
3 10s 

Standing 
Stationary standing with 

subtle movements 
1 5m 

Walking Continuous normal walking 1 5m 

Jogging Regular jogging activity 3 30s 

Jumping 
Repeated jumping 

movements 
3 30s 

 
 

A. Model Selection 

The models analyzed in this study were selected based on their application to the MobiFall dataset 
or datasets with comparable characteristics. Specifically, the inclusion criteria were as follows: 

1) Relevance to Fall Detection: Deep learning architectures with demonstrated performance 
on the MobiFall dataset. 

2) Recency: Studies published after 2020, ensuring alignment with the latest advancements in 
fall detection technologies. 

3) Deployment Insights: Studies providing insights into resource efficiency and deployment 
feasibility on edge devices, critical for real-time patient monitoring in resource-constrained 
environments. 

Models that did not meet these criteria—such as those relying on older datasets, simpler 
approaches, or lacking performance evaluations on MobiFall —were excluded from consideration. 
This methodology ensures a focused and equitable comparison across deep learning models, 
leveraging a common dataset to maintain consistency. By adhering to this structured approach, we 
were able to evaluate the features and design choices that contribute most significantly to fall 
detection, particularly in scenarios requiring real-time monitoring and resource efficiency. 
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B. Metric Selection 

To comprehensively compare the performance and deployability of deep learning fall detection 
models, we selected the following metrics, which provide detailed insights into their effectiveness, 
robustness, and feasibility for edge device deployment: 
 
1) Performance Metric: Commonly used metrics such as accuracy, sensitivity, specificity, F1 

score, and latency allow for a standardized comparative analysis. These metrics quantify the 
model's effectiveness in identifying fall events while minimizing false positives and negatives. 

 
2) Resource Efficiency: This includes memory usage, energy consumption, and model size, 

which are vital for deployment on resource-constrained edge devices. As Bellavista et al. [7] 
highlights, a technique that cannot be implemented due to excessive resource demands is less 
practical for real-world applications. 

 
3) Robustness: Metrics such as noise tolerance and error rates by class assess the model's 

resilience to variations in sensor data and its ability to maintain accuracy across different fall 
scenarios. Zhang et al. [11] emphasize the importance of prioritizing safety-critical events while 
avoiding biases toward non-critical classes. 

 
4) Deployment Readiness: Model compression and compatibility with edge frameworks are 

essential for deployment on wearable and battery-powered devices. Smaller, optimized models 
reduce memory and energy requirements, as proposed by Lin et al. [9]. 

 
5) Data-Related Metrics: Preprocessing requirements and data augmentation influence both 

deployment speed and model generalization. Li et al. [10] note that minimal preprocessing 
simplifies deployment, while effective data augmentation improves performance, especially 
for small or imbalanced datasets. 

 
6) Stability: Metrics like inference consistency and sensitivity to sampling frequency ensure 

reliable predictions across diverse devices and conditions. Javed et al. [8] argue that models 
should maintain consistent performance even with varying sampling frequencies, a common 
constraint in edge devices. 

 
7) Deployment Constraints: Hardware requirements and battery life impact, as outlined by 

Bellavista et al. [7], are critical for ensuring the feasibility of models on wearable devices and 
other edge platforms. 

 
By employing these metrics, this study aims to provide a comprehensive evaluation of fall 
detection models, highlighting trade-offs between performance, robustness, and resource 
efficiency. These insights will help guide the development of more effective and deployable fall 
detection systems for edge AI applications. 
 
 
 
 



 
International Journal of Core Engineering & Management 

Volume-7, Issue-12, 2024           ISSN No: 2348-9510 
 

291 

 

III. DISCUSSION 
 

Fall detection techniques encompass a broad spectrum of methods, including threshold-based 
techniques, traditional machine learning, and deep learning approaches. Among these, deep 
learning—particularly hybrid architectures—consistently outperforms others due to its ability to 
process and analyze complex temporal and spatial patterns [13]. 
 

A. Summary of models 

1) ConvLSTM  with ESF: Sarwar et al. [12] developed a model combining convolutional layers 
for spatial feature extraction and Long Short-Term Memory (LSTM) cells for temporal 
dynamics. Preprocessing steps included outlier removal, data segmentation via sliding 
windows, and feature extraction (e.g., acceleration, angular velocity). The Synthetic Minority 
Over-sampling Technique (SMOTE) was used to address class imbalance, and the model 
effectively captured movement dynamics. It achieved an accuracy of 97.8%. Additionally, 
Exponential Smoothing Forecasting (ESF) was incorporated to provide proactive fall 
prediction, leveraging historical sensor data trends such as vertical acceleration to forecast falls 
with a lead time of 1100–1250 ms. This approach ensured accurate and timely predictions by 
using Mean Absolute Error (MAE) as the loss function during preprocessing. 

 
2) CABMNet: Soni et al [13] developed a two-stage deep learning model for fall detection that 

optimizes both spatial and temporal feature analysis. In Stage 1, CNNs with Convolutional 
Block Attention Modules (CBAM) enhance spatial feature extraction by focusing on the most 
informative data. In Stage 2, Bidirectional LSTM networks (Bi-LSTMs) with Multi-Head 
Attention (MHA) capture temporal dependencies and emphasize critical time steps. 
Preprocessing includes noise reduction via a Kalman filter, data segmentation, and feature 
refinement. The model achieves superior accuracy of 98.52% while maintaining low latency. 
Attention mechanisms (CBAM and MHA) improve interpretability and robustness, making 
CABMNet highly effective for real-world, multi-modal sensor setups. 

   
3) Denoising CVAE: Soni et al [14] introduces an unsupervised fall detection method using a 

denoising LSTM-based Convolutional Variational Autoencoder (CVAE) optimized for 
wearable devices. The model addresses challenges of limited fall data and computational 
constraints by training on data representing normal activities of daily living (ADLs), 
employing hierarchical data balancing and data debugging to enhance performance. Key 
features include convolutional and LSTM layers for spatial-temporal analysis, denoising 
training to handle noisy inputs, and an attention mechanism to prioritize significant features. 
The model achieves high F1 scores across multiple datasets (e.g., 1.0 on MobiFall) with minimal 
memory usage (157.65 kB), making it suitable for real-world deployment. 

 
4) FedVAE: Yang et al [15] uses two specialized variational autoencoders (VAEs): VAEfe 

compresses high-dimensional data into a latent space for efficient feature extraction, while 
VAEgen generates synthetic minority samples to balance the dataset. After time-series sensor 
data is transformed into images via the Gramian angular field method, VAEfe reduces 
dimensionality and VAEgen addresses class imbalance. A global anomaly detection model (M) 
is then trained on these processed features, achieving an accuracy of around 99% and an F1-
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score of about 0.99 for anomaly detection. Model updates (gradients) are aggregated at a 
central server using the FedAvg algorithm, minimizing communication overhead and 
preserving data privacy. The overall approach provides a scalable, privacy-preserving 
framework for remote patient monitoring 

 
B. Performance Metrics: Characteristics of High- and Low-Performing Models 

1) Traits of High-Performing Models 
High-performing models, such as CABMNet, MKLS-Net, and Denoising CVAE, exhibit 
exceptional accuracy and F1 scores, often exceeding 98%. These models share the following 
characteristics: 
 

a) Hybrid Architectures 
The above fall detection studies highlight the effectiveness of hybrid models that integrate 
CNNs with LSTM networks or their variants. CNNs excel at extracting spatial features, 
isolating patterns indicative of a fall, while LSTMs capture the temporal evolution of sensor 
signals. Like specified in ConvLSTM, CABMNet and Denoising CVAE these highbrid 
models offer insight into how readings change over time during fall events [12][13][14].  

 
b) Attention Mechanisms 

Attention mechanisms enable models to emphasize the most critical input features, 
particularly during transitional movements like stumbling or near-falls. This capability is 
evident in CABMNet and Denoising CVAE, where incorporating attention improves 
robustness and minimizes classification errors.[13][14] Notably, adding an attention layer 
to the CVAE architecture significantly boosts its F1 score by directing the learning process 
toward essential data points, thereby enhancing model performance. 

 
c) Data Quality 

Ensuring robust fall detection requires more than just a large dataset; the data must be 
balanced and mirror real-world conditions. The Denoising CVAE study [14] incorporates 
hierarchical data balancing and data debugging, where overlapping ADL and fall data are 
removed to sharpen the distinction between normal and abnormal activities. Meanwhile, 
CABMNet [13] applies a Kalman filter for noise reduction, and the ConvLSTM approach 
[12] uses SMOTE to generate synthetic samples for underrepresented fall classes. 
Combining data balancing, thorough debugging, and noise-reduction techniques can 
significantly elevate model performance across diverse deep learning architectures for fall 
detection. 
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d) Unsupervised learning approaches 

It provides a practical way to identify falls without relying on large sets of fall-specific 
data, instead utilizing more readily available ADL data. By treating falls as anomalies 
and measuring reconstruction errors, these methods can be effectively applied in real-
world settings. Certain models, such as the denoising LSTM-based CVAE, demonstrate 
both efficiency and suitability for wearable devices with limited memory. [14] Further, 
integrating data balancing and debugging practices can significantly boost detection 
accuracy within these unsupervised frameworks. 

 
 

2) Insights from Low-Performing Models 
Lower-performing models often lack advanced architectural features or preprocessing steps, 
which limits their performance: 

a) Simplistic Architectures 

Models relying on basic CNNs or shallow neural networks often fail to capture the 
sequential nature of fall events. They lack the capacity to learn richer representations, 
making them less effective for real-world deployment [12]. 

 
b) Insufficient Regularization 

Models without proper regularization, such as dropout or early stopping, are prone 
to overfitting, leading to poor generalization in varied conditions [12][13]. 
 

c) Minimal Preprocessing 
Models that fail to implement noise reduction or address class imbalance are often 
unable to distinguish between falls and ADLs, resulting in higher rates of false 
alarms or missed detections [12][14]. 

 

3) Resource Efficiency and Deployment Readiness 

The reviewed fall detection models demonstrate varying degrees of balance between 
accuracy, resource usage, and deployment feasibility. A summary of key findings is as 
follows: 

a) Most Deployment-Ready  
The denoising LSTM-based CVAE excels in resource-constrained environments due 
to its minimal memory footprint (around 157.65 kB) and significantly fewer 
parameters (25.6x fewer than some unsupervised counterparts).[14] Its ability to 
deliver high accuracy (e.g., F1 score of 1.0 in some tests) while remaining lightweight 
makes it particularly well-suited for edge devices such as wearables or home 
monitoring systems. 

 
b) Accuracy vs. Complexity  

Models like CABMNet achieve high accuracy (consistently above 98%) through 
attention mechanisms (e.g., CBAM, Multi-Head Attention) and deep architectures 
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(multi-stage CNN-LSTM modules). However, these enhancements often increase 
computational overhead, making real-time deployment on low-power or battery-
operated devices more challenging without further optimization or hardware 
acceleration.[12] 
 

c) Interpretability  
Approaches featuring attention layers (e.g., CBAM, Multi-Head Attention) offer 
enhanced interpretability, as the model can visually highlight critical features in 
sensor data. [13] By contrast, the denoising CVAE relies on a reconstruction error 
metric to identify anomalies (falls), providing a straightforward indicator of data 
irregularities.[14] While this anomaly-based perspective may be simpler to 
understand, it does not explicitly reveal which specific features triggered the 
anomaly. 
 

d) Optimization Needs 
Both ConvLSTM with ESF and FedVAE show promise for specialized scenarios. 
ConvLSTM + ESF can handle real-time fall detection and early prediction, but 
detailed resource usage metrics (e.g., model size, computational load) remain unclear 
[12]. FedVAE optimizes communication efficiency (~95% reduction) in federated 
learning environments, ensuring data privacy. [14] Yet, the on-device resource 
requirements are not fully specified, making it less certain for immediate wearable 
deployment. 

 
Each model’s suitability varies based on context—high-accuracy methods might be ideal for 
clinical settings with reliable infrastructure, while lighter architectures are more viable for home-
based or wearable deployments. Further hardware-friendly optimizations (e.g., quantization, 
pruning) and clarity in resource metrics could enable advanced architectures (like CABMNet or 
FedVAE) to become more practical for real-time, battery-operated systems. 
 

IV. LIMITATIONS 

Despite advancements in Edge AI for fall detection, several challenges remain that must be 
addressed for effective real-world deployment. 

A. Limited Labeled Fall Data 

A major challenge in training robust AI models is the scarcity of labeled fall data. Since real-world 
falls are rare and difficult to capture, models often rely on simulated datasets, which may not fully 
generalize to real-life scenarios. This limitation impacts model accuracy and requires alternative 
learning approaches. 

B. Computational Constraints on Edge Devices 

Deploying deep learning models on resource-constrained edge devices presents significant 
challenges. Many state-of-the-art models require high computational power, making real-time 
inference difficult on wearable and IoT-based systems. 
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C. Variability in Sensor Data 

Fall detection models rely on wearable sensors, which may introduce inconsistencies due to sensor 
placement, user movement patterns, and hardware differences. These variations affect model 
robustness and generalizability. 

D. Lack of Interpretability and Trust 

The black-box nature of deep learning models makes it challenging to interpret their predictions, 
especially in critical applications like healthcare. Explainable AI (XAI) techniques are necessary to 
improve model transparency. 

E. Energy and Battery Constraints 

Wearable devices have limited battery life, and running deep learning models continuously can 
drain power quickly. 

 
 

V. FUTURE RESEARCH 

To address these limitations, future research should focus on the following key areas: 

A. Unsupervised Learning  

Future research should focus on exploring unsupervised learning techniques such as 
Autoencoders (AE), Variational Autoencoders (VAE), and Generative Adversarial Networks 
(GAN) to minimize the dependency on labeled fall data [14]. These methods can leverage readily 
available ADL data to identify anomalies, making them more practical for real-world applications 
where fall data is scarce. 

B. Lightweight Models 

The development of resource-efficient deep learning models with fewer parameters remains 
critical for wearable device deployment [17]. Techniques such as model pruning, quantization, and 
hierarchical data balancing should be employed to reduce computational demands while 
maintaining high performance. These optimizations will enhance real-time applicability on edge 
devices with limited memory and power. 

C. Explainable AI (XAI) 

Enhancing the interpretability of deep learning models using Explainable AI (XAI) techniques is 
crucial [16]. Transparent models can improve trust and adoption in healthcare, providing insights 
into decision-making processes and ensuring the reliability of predictions, especially in safety-
critical scenarios like fall detection. 

 
 

VI. CONCLUSION 

This paper presented a comparative analysis of various deep learning models for fall detection, 
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highlighting the trade-offs between accuracy, resource efficiency, and deployment readiness. 
High-accuracy approaches like CABMNet and ConvLSTM with ESF leverage sophisticated 
attention mechanisms and multi-layer architectures, but their computational demands pose 
challenges for real-time, low-power deployment. In contrast, the denoising LSTM-based CVAE 
demonstrates a substantially reduced parameter count and memory footprint, making it a strong 
candidate for wearable deployment. Furthermore, FedVAE underscores the potential of federated 
learning in maintaining data privacy and reducing communication overhead, although further 
exploration of device-level resource usage is needed. 

Despite these advancements, real-world deployment remains challenging due to the limited 
generalizability of models, computational constraints, and difficulty in distinguishing falls from 
Activities of Daily Living (ADLs). Models prone to overfitting may struggle in diverse 
environments, necessitating robust regularization and domain adaptation strategies. Additionally, 
fall detection models must mitigate class imbalance and sensor noise to reduce false alarms and 
missed detections. 

To address these challenges, future research should focus on balancing performance with 
deployment constraints, integrating explainable AI (XAI) techniques to enhance trust and adoption 
in healthcare. The development of adaptive learning frameworks can further improve 
personalization and generalizability across different users and environments. Moreover, 
unsupervised learning approaches, such as Autoencoders and GANs, offer promising alternatives 
to minimize dependency on labelled fall data. 

By addressing these challenges, Edge AI-based fall detection systems can evolve into practical, 
scalable solutions that not only enhance real-time patient monitoring but also contribute to 
personalized and efficient healthcare applications. The advancements in model interpretability, 
computational efficiency, and privacy-preserving AI will play a crucial role in shaping the next 
generation of wearable fall detection systems, ultimately improving patient safety and quality of 
life. 
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