

International Journal of Core Engineering & Management

Volume-6, Issue-06, 2019 ISSN No: 2348-9510

176

EFFICIENT ENCODING USING PROTOCOL BUFFERS

Nilesh Jagnik

Mountain View, USA
nileshjagnik@gmail.com

Abstract

Protocol buffers are a mechanism for runtime handling and serialization/deserialization of
structured data. Protocol buffers are a compact and performant storage format that have several
advantages over traditional formats like JSON and XML. In addition, Protocol buffers provide
autogenerated boilerplate that creates runtime constructs for handling data in memory. Protocol
buffers are supported in multiple languages and platforms. In addition, they provide ways to
make backwards compatible changes to the data structure. However, there are certain scenarios
where Protocol buffers are not the ideal choice. In this paper, we look at Protocol buffers, their
features and advantages, how to use them and also limitations to be aware of when using them.

Keywords: Data encoding, Data serialization, Data structure, Runtime data handling

I. INTRODUCTION
Software systems often process a large amount of data and need to store, read and transfer data
between services. An important consideration here is to ensure that the services that read data
interpret it in the same way as when it was written or sent. This is because written data is just
bytes, and it is up to the reader to interpret what those bytes mean. This is especially true if the
data has a complex structure. This structure must be maintained when the data is stored and
subsequently read. So, there is a need for a standardized storage and transfer format so that
complex data can be easily interpreted by different services in the same way.
There are several storage formats available that ensure data can be read and written is a consistent
format. Out of these, the most commonly used ones are JSON and XML. These formats define the
structure in which data should be written (when stored as bytes). They also offer parsers that allow
reading back from wire format (stored format) to form the original structured data. JSON and
XML formats are simple and can be easily interpreted by humans and machines both.
However, human readable formats tradeoff compactness and efficiency for simplicity. Often stored
data can be pretty large to accommodate formatting. Protocol buffers are an elegant solution to this
problem. They solve many of the problems associated with other storage formats with minimal
drawbacks.

II. PROTOCOL BUFFERS FEATURES
Protocol buffers are a way for serialization of structured data introduced by Google. They have the
following features:

A. Usage
Protocol buffers are a format suitable for both short-term network traffic and also long-term

mailto:nileshjagnik@gmail.com

International Journal of Core Engineering & Management

Volume-6, Issue-06, 2019 ISSN No: 2348-9510

177

storage of data up to a few megabytes in size. This format is well-suited towards inter-server
communication.

B. Structure
The structure in which data is stored is defined by service owners. This means that the reader and
writer need to know the agreed upon structure. This structure is defined in a .proto file.

C. Cross-Language Compatibility
Protocol buffers offer library for reading and writing protocol buffers, including C++, C#, Dart,
Go, Java, Kotlin, Objective-C, PHP, Python and Ruby. This means that different services written in
different languages can easily transfer data between each other.

D. Auto Generated Classes
Protocol buffers automatically generate classes according to the data structures defined in .proto
files. Instances of data can be represented as instances of these classes. This allows easy data
generation and handling during runtime. This also means that there is no need to create data
classes which are generally needed for runtime management of data. This reduces boilerplate code
that developers need to manage.

E. Compact Storage
Traditional data storage formats store a lot of extra information to allow readers to parse data
correctly. In Protocol buffers, the reader and writer are assumed to be aware of the format.
Protocol buffers can store data in a compact manner. This allows faster transfer rates and high
transfer efficiency since less data needs to be sent and stored.

F. Performance
Protocol buffers parsing is faster than traditional methods leading to improved application
performance.

G. Backwards Compatibility
When there is an update to the proto format defined in the .proto file, different processes may have
a different understanding of the format. However proto parsers are able to parse data in a
backward compatible manner. Note that this requires service owners to make updates to the proto
format in a backward compatible way. Protocol buffers have clear guidelines on what changes are
safe in terms of backward compatibility.

III. WORKING WITH PROTOCOL BUFFERS
Let us take a deeper look to understand how to use Protocol buffers.

A. Proto Definition
The first thing that needs to be done is to define the structure of data. This definition should be
known to both the sender/writer and receiver/reader side. The proto definition should be
imported as a code dependency on both sides. Fig. 1 shows an example of a proto definition.

International Journal of Core Engineering & Management

Volume-6, Issue-06, 2019 ISSN No: 2348-9510

178

message Owner {

optional string name = 1;

optional string email = 2;

}

message Vehicle {

optional string make = 1;

optional string model = 2;

optional int32 year = 3;

optional Owner owner = 4;

}

Fig. 1. Proto definition inside .proto file

B. AutoGenerated Classes
Protocol buffers automatically generate classes according to the proto definitions inside the .proto
file. The generated classes should be imported in application code. Then classes can be used as
data carriers. Generated classes have builder interfaces which can be used for easy construction of
objects. Fig. 2 shows can example usage of the messages defined in Fig. 1.

Owner owner = Owner.newBuilder()

 .setName("Nilesh Jagnik")

 .setEmail("nileshjagnik@gmail.com")

 .build();

Vehicle vehicle = Vehicle.newBuilder()

 .setMake("Tesla")

 .setModel("S")

 .setYear(2018)

 .setOwner(owner);

Fig. 2. Data classes automatically generated from proto definition (Java).

C. Serializing Data

The autogenerated classes also provide helpers which can assist with serializing data. Serialized
data is written following the structure defined in the .proto file. Fig. 3 shows an example of how
convenient it is to serialize a proto (short for Protocol buffer) message.

OutputStream out = new FileOutputStream("vehicles");

vehicle.writeTo(out);

Fig. 3. Seralizing contents of a proto message to a file (Java).

D. Deserializing Data

Similar to serialization, there are also helpers that allow easy deserialization and parsing of data.
This can also be done in a different language. Fig. 4 shows a C++ program reading the data
serialized by Fig. 3.

Vehicle vehicle;

streams input("vehicle");

vehicle.ParseFromIstream(&input);

Owner owner = vehicle.owner();

std::string make = vehicle.name();

Fig. 4. Deserializing data using proto buffer helpers (C++).

International Journal of Core Engineering & Management

Volume-6, Issue-06, 2019 ISSN No: 2348-9510

179

IV. PROTOCOL BUFFERS AND GRPC
In addition to simple inter-service transfer of data, Protocol buffers can also be used for defining
structured RPC interactions between services. The gRPC framework uses Protocol buffers for
defining service interfaces. This framework extends the benefits of Protocol buffers to create a
cross-language RPC framework. gRPC automatically handles transfer of structured data between
client and server. This enables clients and servers to simply focus on developing application logic.

V. LIMITATIONS OF PROTOCOL BUFFERS
There are certain scenarios which Protocol buffers are not ideal for.

A. Large Data Size
Protocol buffers are load messages fully in memory. In practice, it is possible to create several
copies of the same data due to the way code is written. In this case, Protocol buffers force the usage
of a lot of memory. For data larger in size than a few megabytes, Protocol buffers are not the best
choice.

B. Comparison of Serialized Data
A Protocol buffer can be serialized in different ways even when the data represented by it remains
same. Due to this, serialized data should first be parsed into memory before comparison.

C. No Compression
Protocol buffers are not meant for saving storage space. They have no built-in support for
compression.

D. Scientific Data
Protocol buffers are not ideal for representing scientific data involves matrix operations on multi-
dimensional matrices. The speed and size of this type of data using Protocol buffers is not ideal.

E. Object Oriented
Protocol buffers are not ideal for use in languages that do not use object-oriented programming.
Protocol buffers has limited support for languages like Fortran and IDL.

F. No Self-Description
There is no way to interpret a serialized Protocol buffer without access to the proto definition. This
limits the usage to cases where proto definition can be shared between services.

G. Formalization
Protocol buffers are not suited to legal data requirements since they are not regulated by any
regulatory bodies.

VI. CONCLUSION
In conclusion:

1. Protocol buffers are a great solution for handling structured data, including runtime
handling as well as serialization and deserialization for storage and transfer. They are
compact, fast and efficient.

International Journal of Core Engineering & Management

Volume-6, Issue-06, 2019 ISSN No: 2348-9510

180

2. They provide a lot of boilerplate code for runtime management and reading/writing data.
3. They provide many other features such as cross language support and backwards

compatibility in case of a schema change.
4. They are easy to work with but do have a learning curve for beginners. There are certain

best practices that must be followed when using Protocol buffers.
5. There are certain scenarios and use cases where Protocol buffers are not the ideal choice.

REFERENCES

1. Sasha Rezvina, “5 Reasons to Use Protocol Buffers Instead of JSON for Your Next Service
(Jun 2014),” https://codeclimate.com/blog/choose-protocol-buffers

2. “Protocol Buffers Documentation (Jun 2018),” https://protobuf.dev/overview/
3. Marty Kalin, “How to use Protobuf for data interchange (Oct 2019),”

https://opensource.com/article/19/10/protobuf-data-interchange
4. Bruno Krebs, “Beating JSON performance with Protobuf (Jan 2017),”

https://auth0.com/blog/beating-json-performance-with-protobuf/
5. John Doak, “Protocol buffers: Avoid these uses (Aug 2017),”

http://www.golangdevops.com/2017/08/16/why-not-to-use-protos-in-code/
6. “Protocol Buffers vs. JSON (Nov 2018),” https://bizety.com/2018/11/12/protocol-buffers-

vs-json/
7. Blake Smith, “A Primer on Protocol Buffers (Sep 2012),”

https://blakesmith.me/2012/09/05/a-primer-on-protocol-buffers.html
8. “gRPC | Guides (Sep 2019),” https://grpc.io/docs/guides/

