

International Journal of Core Engineering & Management

 Volume-5, Issue-04, July-2018, ISSN No: 2348-9510

49

EFFICIENT IMAGE CACHING IN ANDROID APPLICATIONS

Jagadeesh Duggirala
Software Engineer, Rakuten, Japan

jag4364u@gmail.com

Abstract

Efficient image caching is essential for mobile application development, significantly enhancing
user experience by reducing load times and minimizing network usage. This paper explores
techniques for caching images efficiently in Android applications, focusing on memory caching,
disk caching, and the use of third-party libraries. It also discusses best practices, challenges, and
the future of image caching in the context of Android development.

Keywords: android applications, image loading, memory cache, network loading, memory
management, offline support

I. INTRODUCTION
In the world of mobile applications, images are often the largest assets that significantly affect
performance and user experience. Repeatedly downloading images can lead to slow load times,
high data usage, and poor user experience. Efficient image caching is a technique that stores
images locally, thus reducing the need for frequent network requests. This paper delves into
various strategies and best practices for image caching in Android applications to ensure a
seamless and responsive user experience.

II. BACKGROUND
Caching is the process of storing data temporarily to reduce the time and resources needed to fetch
it again. For mobile applications, image caching involves storing images in memory or on disk to
avoid repeated network requests. Efficient image caching reduces latency, minimizes bandwidth
usage, and enhances application performance.

Importance of Image Caching
1. Performance: Reduces loading times by fetching images from a local cache instead of over the

network.
2. User Experience: Provides a smooth and responsive interface by displaying cached images

instantly.
3. Network Efficiency: Decreases data usage by reducing redundant network requests.
4. Offline Access: Ensures images are available even when the device is offline.

International Journal of Core Engineering & Management

 Volume-5, Issue-04, July-2018, ISSN No: 2348-9510

50

III. IMAGE CACHING TECHNIQUES
There are several techniques for caching images in Android applications, each with its own
advantages and use cases. This section explores the most common methods, including memory
caching, disk caching, and the use of third-party libraries.
1. Memory Caching
Memory caching stores images in the device's RAM, providing the fastest access times. However,
memory is a limited resource, and excessive use can lead to application crashes or slow
performance.

Implementation
In Android, LruCache is a common class used for memory caching. It uses a least recently used
(LRU) algorithm to manage the cache size and remove the least recently used items when the cache
reaches its maximum size.

Advantages

 Fast access to images.

 Reduces latency and improves performance.
Challenges

 Limited by available RAM.

 Potential for Out Of Memory errors if not managed properly.

International Journal of Core Engineering & Management

 Volume-5, Issue-04, July-2018, ISSN No: 2348-9510

51

2. Disk Caching
Disk caching involves storing images on the device’s internal or external storage, providing a
larger but slower storage solution compared to memory caching.

Implementation
For disk caching, DiskLruCache is commonly used. It maintains a limited size of cache on the disk,
removing the oldest entries when the size exceeds a specified

International Journal of Core Engineering & Management

 Volume-5, Issue-04, July-2018, ISSN No: 2348-9510

52

Advantages

 Larger storage capacity compared to memory caching.

 Persistent storage, surviving application restarts.
Challenges

 Slower access times compared to memory.

 Requires management of storage space and clean-up mechanisms.

3. Third-Party Libraries
Using third-party libraries can simplify the implementation of image caching. Popular libraries
include Glide, Picasso, and Fresco.

A. Glide
Glide is an image loading and caching library recommended by Google. It efficiently handles
memory and disk caching and provides features like image transformations and animations

B. Picasso
Picasso, developed by Square, is another popular library for image loading and caching. It is
simple to use and handles image transformations, resizing, and caching efficiently.

C. Fresco
Fresco, developed by Facebook, is designed to handle large image sets, including animated GIFs. It
manages memory efficiently by using a different bitmap memory management technique.

Advantages

 Simplifies implementation.

 Handles both memory and disk caching efficiently.

 Provides additional features like image transformations, loading animations, and more.
Challenges

 Adds an external dependency to the project.

 Limited control over caching mechanisms compared to custom implementations.

International Journal of Core Engineering & Management

 Volume-5, Issue-04, July-2018, ISSN No: 2348-9510

53

IV. BEST PRACTICES
To maximize the benefits of image caching in Android applications, consider the following best
practices:

1. Use Appropriate Cache Size: Balance between memory and disk cache sizes based on

application needs and available resources.
2. Efficient Cache Management: Implement cache eviction policies to manage storage space

effectively.
3. Optimize Image Loading: Resize and compress images to reduce memory usage and loading

times.
4. Leverage Existing Libraries: Utilize third-party libraries for efficient and easy-to-implement

caching solutions.
5. Test Thoroughly: Ensure that the caching strategy works efficiently under various conditions,

including low memory and poor network connectivity.

V. CHALLENGES IN IMAGE CACHING
Despite the advantages of image caching, developers face several challenges:

1. Data Consistency
Ensuring that the cached images are up-to-date with the server can be challenging, especially with
frequent updates.
Solution: Implement cache invalidation strategies to refresh outdated images periodically or based
on specific triggers.

2. Memory Management
Efficiently managing memory usage to avoid out of Memory errors is crucial.
Solution: Use LruCache for memory caching with appropriate size limits and leverage third-party
libraries like Glide or Picasso that handle memory efficiently.

3. Disk Space Management
Managing disk space to prevent excessive usage is necessary.
Solution: Implement disk cache eviction policies and regularly clean up unused cache files.

4. Network Efficiency
Balancing between cache hits and network requests to ensure efficient use of network resources.
Solution: Use caching headers and conditional requests to minimize unnecessary network usage.

VI. FUTURE TRENDS IN IMAGE CACHING
As mobile applications continue to evolve, so do the techniques and technologies for image
caching. Some emerging trends include:
1. Edge Caching: Using edge servers to cache images closer to the user, reducing latency and

improving performance.

International Journal of Core Engineering & Management

 Volume-5, Issue-04, July-2018, ISSN No: 2348-9510

54

2. AI and Machine Learning: Leveraging AI to predict and pre-cache images based on user
behavior and preferences.

3. Advanced Compression Techniques: Using more efficient compression algorithms to reduce

image sizes without compromising quality.

4. Enhanced Third-Party Libraries: Continuous improvements in third-party libraries to offer

better performance and more features.

VII. CONCLUSION
Efficient image caching is crucial for enhancing the performance and user experience of Android
applications. By implementing memory caching, disk caching, and leveraging third-party libraries,
developers can ensure fast and reliable access to images. Following best practices for cache
management and optimization further improves the effectiveness of these caching strategies,
leading to smoother and more responsive applications

REFERENCES
1. Android Developers: Caching Bitmaps
2. Glide Documentation
3. Picasso Documentation
4. Fresco Documentation
5. Vogels, W. (2009). Eventually Consistent. Communications of the ACM, 52(1), 40-44.
6. Richards, M. (2018). Software Architecture Patterns. O'Reilly Media.

