

International Journal of Core Engineering & Management

Volume-5, Issue-11, February-2019, ISSN No: 2348-9510

19

EVENT-DRIVEN ARCHITECTURE WITH JAVA AND AWS

Prathyusha Kosuru
Project Delivery Specialist
Deloitte Consulting LLP

Salem, USA
prathyushakosuru308@gmail.com

Abstract

The integration of Java with AWS EventBridge enhances the creation of event-driven application
that runs with an asynchronous architecture. AWS SQS and SNS can conveniently be used with
Java to enable the decoupling and high responsiveness of distributed messaging services. Prior to
February 2019, conventions such as event sourcing with Java and AWS DynamoDB Streams were
necessary for building reliable systems that display how the state has evolved over time and
provide the grip and reliability necessary to sustain event-driven microservices (Bermudez et al.,
2014).

Keywords: Event-Driven Architecture (EDA), Java Programming, AWS Services, Microservices,
Serverless Computing, Amazon SNS (Simple Notification Service), Amazon SQS (Simple Queue
Service), AWS Lambda, Event Streaming, Apache Kafka, Message Broker

I. INTRODUCTION
In today’s rapidly evolving digital environment, organizations are on a quest to improve their
application architecture. Introducing event-driven architecture (EDA) – an active architectural
style that focuses on handling real-time data and having asynchronous interactions. This modern
approach lets systems react flexibly to event occurrences, enhancing the system’s responsiveness
and scalability. When used with other robust tools like Java and AWS, EDA changes how software
developers work to develop applications. It paves the way for possibilities wherein every
constituent interacts using an event-based system instead of a request-response way. Just think of
an architecture you want to have that is as flexible with the fluctuations of your business processes
(Clark & Barn, 2012).

II. EXPLANATION OF EVENT-DRIVEN ARCHITECTURE AND ITS SIGNIFICANCE
EDA stands for event- driven architecture and it has been described as a software design pattern of
producing, detecting and handling events. What is more important in this model is the event
technique where components pass information through events not directly. It also enables
flexibility and scalability since the two components are untangled. It is generally because EDA is
highly efficient in dealing with the data stream. It doesn’t require waiting for pre-specified
schemes, different form interactions against changes into an application’s state. Accomplishing an
occasion orientated strategy allows organizations to construct systems which will be more

International Journal of Core Engineering & Management

Volume-5, Issue-11, February-2019, ISSN No: 2348-9510

20

appropriate and competent within emerging contexts. As a result, the functionality of the websites
improves the user experience that customer gets, and efficiency. Furthermore, because it eliminates
dependencies between services, and as such, EDA supports distributed systems. Therefore, it is
possible for teams to create and release applications without much need to communicate
extensively through the use of events. This architecture supports innovation because it can be
updated and has faster iterations (Hofmann et al., 2017).

III. JAVA WITH AWS EVENTBRIDGE
AWS EventBridge is an advanced event bus that helps integrate applications through events. The
goal is to provide smooth integration to bring the architecture of systems as created by various
developers loosely connected. When Java is integrated with AWS Event Bridge, we can design the
elastic and reactive app. You can send events from your Java application directly to EventBridge.
This means your app can respond instantaneously with no need for all kinds of polling
mechanisms. Java SDK does that, making interaction fluent. You can readily broadcast events or
subscribe to them within an application architecture such as Spring Boot. This flexibility helps
avoid focusing on infrastructure while allowing the team to concentrate on business logic. It also
leads to better resource management for event-driven architectures, which are the successors of
traditional architectures. It enables efficient processing of tasks, improving performance, cost
characteristics of cloud services, and availability (Clark & Barn, 2012).

IV. USING JAVA APPLICATIONS WITH EVENTBRIDGE FOR REAL-TIME

PROCESSING
It is possible to enhance several Java applications using Amazon Event Bridge to boost real-time
processing. This serverless event bus allows developers to create applications that are always
ready to respond to events and changes. AWS SDK for Java makes it very simple to work with
Event Bridge. It begins with setting an event rule that outlines the behavior of your application
with regard to certain events. This characteristic makes it possible to filter and direct events in a
versatile manner. Among its attractive features, your Java application can publish events directly
to EventBridge after being set up. They activate different kinds of targets, for example, Lambda
functions or Step Functions, so that the processes run smoothly and work faster. The feature of
interest here is that it can disaggregate elements in your architecture. Each service communicates
asynchronously through events without being embedded very rigidly with each other. This
reduces downtime and improves dependability while receiving high throughput constellations
with less effort (Hofmann et al., 2017).

4.1 Advanced Features and Integration
EventBridge also provides some additional features that make it even more valuable for Java
applications. One such feature is the event bus management feature which allows developers to
define custom event buses so that event of a specific type can be isolated from the other events.
This is especially important when there are many different events to organize within the scope of a
large application. Still, if connected with other AWS services, the EventBridge is packed with
another powerful feature. For instance, one can integrate it with Amazon CloudWatch by which it
can monitor and log events as well. In one way, the integration allows developers to have better
comprehension of their application.

International Journal of Core Engineering & Management

Volume-5, Issue-11, February-2019, ISSN No: 2348-9510

21

4.2 Scalability and Cost-Effectiveness
A worse thing to say about EventBridge is that it is a naturally scalable solution when used with
Java applications. This is because; it is a fully managed service that adapts to the amount of events
received without prior intervention. This means that the functionality of your application can
support heavy traffic at some point in its life or gradual increases in traffic as the days go by.
Furthermore, Customers can only pay for the actual usage of EventBridge through its effective and
flexible pay-per-use pricing model regardless of the business size. There are no license fees; you
only pay for the processing of individual cases and that can be much cheaper than the
maintenance of a separate event processing infrastructure.

4.3 Best Practices and Implementation
All Java applications that include EventBridge should adhere to the following best practices: This
comprises subscribing to the right event patters when filtering events, implementing error and
retry mechanisms and setting up dead-letter queues where unmatched events occurred. With these
practices and the usage of EventBridge at their best, developers can make and develop scalable
and efficient Java applications that perform excellent in realtime event processing and
responsiveness.

V. INTEGRATING SQS AND SNS WITH JAVA
Accomplishing the Amazon SQS and SNS services in Java will revolutionize your Java
application's messaging system. By leveraging these services, you establish strong microservices
communication through which you can digitally enable them. First, one has to create an object
where there are easy-to-use libraries available in AWS SDK for Java. As you recall, invoking and
sending messages to an SQS queue or publishing a notice using SNS only requires three lines of
code. By using SQS, it is absolutely guaranteed that a message is safe before it is processed by the
recipient. This is specifically important for applications that require some level of failure tolerance.
While with SNS, you can freely broadcast updates to as many subscribers as you want at the same
time. Suppose certain user activities result in events that can be pushed using SNS while the same
events are placed in SQS for subsequent treatment by worker services. The modularity that this
synergy brings improves scalability and allows for the graceful separation of elements in your
schema (Kim &Wellings, 2010).

VI. BENEFITS OF USING AMAZON SQS AND SNS IN EVENT-DRIVEN APPLICATIONS
AWS is valuable to event-driven applications when applied because of its modules, Amazon SQS
and SNS, refine event-driven application functionalities significantly. They build a strong
communication interface between various modules. SQS can be used to queue messages. This
makes it possible for messages not to be lost in the instance that systems are down or are perhaps
offline for some time. This allows it to support asynchronous processing, which may actually
enhance the total performance of the system. However, SNS allows sending actual and real-time
notifications to many subscribers at the very first instance. This feature is very important when
some occurrence takes place, and something needs to be done on the spot. Altogether, SQS and
SNS make the implementation of decoupled architectures possible. Services can run uninterrupted
without the service on the opposite end, having to know its existence at all. Flexibility is achieved

International Journal of Core Engineering & Management

Volume-5, Issue-11, February-2019, ISSN No: 2348-9510

22

when a company's demand grows or shrinks. Both services take care of scaling requirements as a
background chore that does not require further intervention by the developers, thus giving them
space to provide interesting new features to users while not having to worry about the lowest-level
infrastructure challenges (Poornalinga& Rajkumar, 2016).

VII. EVENT SOURCING IN JAVA
The event sourcing, is a very influential pattern in the software architecture, especially when used
in the Java language. The concept behind it is to save changes in the state not as the state itself but
as an event that has occurred. This approach affords developers the ability to build an application
state at some point in time. When implementing event sourcing in Java, a change is described as an
event and is unalterable. These events are kept as a record within an append-only structure, so it is
simple to monitor them and repeat the process if required. This is of great assistance in debugging
and auditing exercises. In the case of applications that rely on event sourcing, Axon Framework
shows reliable support for Java platforms. They simplify the response and management of
commands, events and projections. One important benefit is that it improves the data
synchronization of distributed applications. Because each action results in the recording of a new
event, the historical record can always be kept accurate while accommodating the required
business processes (Sbarski&Kroonenburg, 2017).

VIII. CONCEPT OF EVENT SOURCING AND ITS ADVANTAGES
Event sourcing is quite suitable and has a robust architectural pattern where an application state is
captured as a series of events. Unlike simple saving of the layout of the database, all cooperations
are saved in a transaction log, which is strictly write-only. This approach has very many merits, as
shown below. First, it maintains the full history of each transaction, which substantially reduces
the time necessary for debugging and, if necessary, auditing. State-based software is advantageous
to developers as it allows them to follow the event history leading to a particular state. Also, event
sourcing improves scalability. Every application creates events, and as it grows, it can replay
events to construct its current state without involving frequent changes in databases or schemas. In
addition, this technique enhances the system’s capability to hide faults compared to previous
approaches, thus enhancing the achievement of better fault tolerance. Since every event is saved
faithfully, coming up with states after crashes turns out to be easy and effective. Adopting event
sourcing makes it easier for developers to create sound applications and maintain them during
their applications’ lifespan (Varia, 2011).

IX. CHALLENGES AND SOLUTIONS

When used in event-driven architecture, several problems can be encountered, including
integration problems. This can be a specific challenge of most push systems: guaranteeing the
transmission of messages. Especially if there are no efficient tools, messages can be missed or
arrive too late. In order to overcome this problem, Amazon SQS can be used for queueing and
Amazon SNS for notification improvements. For these services to operate, they make it possible for
messages to be held until the target consumer processes the message. A third issue is the
management of event schema changes. While this is not impossible, it is usually easier during the

International Journal of Core Engineering & Management

Volume-5, Issue-11, February-2019, ISSN No: 2348-9510

23

design and development phase of an event schema. With applications evolving and transforming
over time, preserving backwards compatibility becomes highly important to avoid disrupting
existing integrations. When dealing with change, a couple of things to consider: using versioning
for events manages changes gracefully. This enables different versions of consumers to co-exist
while in the same process, step by step, transforming them into new schemas. Evaluation of events
and debugging is also challenging in composite event-driven systems. Using tools such as AWS
CloudWatch gives an understanding of how the system behaves and allows you to trace issues
through logs and metrics at your disposal (Sbarski&Kroonenburg, 2017).

X. CONCLUSION
Event-driven architecture is now an important element of software development practice. This
being the case, its potential to improve responsivity and scalability makes it quite appealing to
many developers. Multiplied by Java and AWS, it becomes significantly more beneficial. These
two allow applications to efficiently and effectively organize, process and minimize the time taken
to address events as they occur. Each flexible element, EventBridge, SQS, and SNS, adds much
value. Besides that, event sourcing has advantages for the same applications by giving them clarity
and traceability. This means that developers can easily reconstruct previous states and simplify
various debugging processes. This approach leads to better architectural solutions that are resilient
when the demands start shifting. So, as organizations continue to extol their digital transformation
journey, these technologies will be critical to compete in today’s dynamic world (Varia, 2011).

REFERENCE

1. Bermudez, I., Traverso, S., Munafo, M., &Mellia, M. (2014). A distributed architecture for
the monitoring of clouds and CDNs: Applications to Amazon AWS. IEEE Transactions on
Network and Service Management, 11(4), 516-529.

2. Clark, T., & Barn, B. S. (2012, February). A common basis for modelling service-oriented
and event-driven architecture. In Proceedings of the 5th India Software Engineering
Conference (pp. 23-32).

3. Hofmann, M., Schnabel, E., & Stanley, K. (2017). Microservices Best Practices for Java. IBM
Redbooks.

4. Kim, M., &Wellings, A. (2010). Efficient asynchronous event handling in the real-time
specification for java. ACM Transactions on Embedded Computing Systems (TECS), 10(1),
1-34.

5. Poornalinga, K. S., & Rajkumar, P. (2016). Continuous integration, deployment and
delivery automation in AWS cloud infrastructure. Int. Res. J. Eng. Technol.

6. Sbarski, P., &Kroonenburg, S. (2017). Serverless architectures on AWS: with examples using
Aws Lambda. Simon and Schuster.

7. Varia, J. (2011). Best practices in architecting cloud applications in the AWS cloud. Cloud
Computing: Principles and Paradigms, 457-490. And book. Mill Valley, CA: University
Science, 1989.

