
 
International Journal of Core Engineering & Management 

Volume-8, Issue-03, 2025           ISSN No: 2348-9510 

69 

 

 
FASTER ANALYTICS USING PARALLEL SOFTWARE STORAGE 

ARCHITECTURE 
 

Bharathram Nagaiah 
bharathram.nagaiah@gmail.com 

 

 
Abstract 

 
The explosion of data at petabyte scales has made high-speed analytics a key competitive 
differentiator across technology platforms. Traditional storage and computer architectures are 
struggling to meet the demands of real-time processing, high concurrency, and deep analytical 
workloads. This paper examines how parallel software storage architectures—which distribute 
data I/O and metadata services across multiple nodes—enable faster, more scalable analytics. 
We explore key architectural patterns, implement a prototype combining object- and block-
based parallel storage, benchmark it across standardized workloads (TPC-H, TPC-DS), and 
compare it to conventional shared-NAS and direct-attached storage. Our results demonstrate 
significant performance benefits: up to 6× acceleration in query execution and 3–4× throughput 
improvement, while maintaining scalability and cost-effectiveness. We conclude with design 
recommendations, limitations, and opportunities for future research. 
 
Keywords— Parallel software storage, Distributed file systems, High-performance analytics, 
Metadata service, I/O scaling. 
 

 
I. INTRODUCTION 

1.1 Background & Motivation 
In today’s big data era, organizations are inundated with vast volumes of structured and 
unstructured data. Data-driven decision-making—from real-time fraud detection and supply-
chain optimization to large-scale scientific simulations—relies heavily on efficient analytics 
platforms. Conventional storage approaches—centralized NAS/SAN or single-node systems—
cannot scale to meet the demands of modern analytical workloads, especially when real-time 
performance and concurrency are critical. [1] 
 
1.2 Problem Statement 
Analytical queries against massive datasets are often I/O-bound, experiencing bottlenecks in 
read/write throughput, high metadata contention, and poor utilization of multiple compute 
cores. Single-controller storage systems and traditional distributed file systems suffer from 
head-of-line queuing, limited parallel metadata handling, and network congestion. These 
challenges hinder the speed of insights and drive up operational costs. [2] 
 
 



 
International Journal of Core Engineering & Management 

Volume-8, Issue-03, 2025           ISSN No: 2348-9510 

70 

 

1.3 Proposed Solution 
We propose deploying a parallel software storage architecture (PSSA) that distributes both data 
and metadata access across multiple storage nodes, with intelligent orchestration to optimize 
locality, parallelism, and load balancing. By decoupling metadata services from data storage 
and replicating them across lightweight nodes, PSSAs allow multiple analytics engines to 
concurrently access different data partitions without contention, enabling near-linear 
performance scaling. 
 
1.4 Contributions 
1. Design and implementation of a hybrid block/object-based PSSA. 
2. A comprehensive benchmarking methodology using TPC-H and TPC-DS workloads. 
3. Quantification of performance improvements over baseline architectures. 
4. In-depth analysis of system overheads, bottlenecks, and design trade-offs. [3] 

 
 

II. METHODOLOGY  
2.1 Architecture Overview 
Our prototype consists of the following main components: 

 Metadata Service (MDS) 
A cluster of lightweight VMs running clusterd or custom RPC trackers that shared filesystem 
metadata (like file inodes, directories) across multiple nodes. Each client has access to a load 
balanced metadata endpoint proxy. 

 Data Storage Nodes (DSN) 
A pool of commodity x86 servers each running object storage daemons (e.g., Ceph OSD, MinIO 
agents) exposing block  and object-level APIs. Data is striped and erasure coded across DSNs to 
maximize throughput and resilience. 

 Analytics Engines (AE) 
Clients like Presto/Trino, Spark, or customized SQL-engines are deployed on compute nodes 
connected via high-speed Ethernet or InfiniBand. Each AE fetches and writes data directly to 
DSNs using native object or block protocols, bypassing a centralized metadata choke point. 

 Load Balancer / Proxy 
A lightweight software layer (e.g., HAProxy or custom-fanout proxy) presents unified access 
endpoints for both metadata and data, directing requests to appropriate nodes without 
exposing internal topology. [4] 
 
2.2 Data Distribution 
Data Partitioning: Datasets are partitioned based on query-usage patterns—range-partitioning 
for analytics-friendly scanning. 
Striping & Erasure Coding: We stripe partitions across many DSN disks and employ Reed-
Solomon erasure coding to balance redun¬dancy, fault tolerance, and usable capacity. [5] 
 
 



 
International Journal of Core Engineering & Management 

Volume-8, Issue-03, 2025           ISSN No: 2348-9510 

71 

 

 
2.3 Implementation Details 

 Metadata Protocols: We experimented with clusterd’s distributed metadata versus a custom 
protocol built on Raft-based sharding and vector clocks. 

 Network Stack: Tested over 10GbE and 25GbE NICs with RDMA offload (RoCEv2) to 
assess network versus storage bottlenecks. 

 Client Bindings: Analytics engines interface using S3-compatible APIs, POSIX-binded FUSE 
layers, or raw block devices attached to virtual storage pools. [6] 

 
2.4 Benchmarking Setup 

 Hardware: 12 nodes total—8 DSNs (each with 16 TB NVMe + 32 GB DRAM), 2 MDS VMs, 2 
compute nodes running Presto/Spark. All interconnected via 25 GbE. 

 Datasets: 10 TB scale TPC-H and 50 TB scale TPC-DS. 

 Workload Variants: 
1. Single client, long running queries 
2. Multi-client concurrent queries (4, 8, 16 clients) 
3. Mixed read/write analytical workloads 
We also compare against baseline: nodes attached to single shared NAS with SSD-backed XFS 
volumes. [7] 
 
2.5 Metrics Collected 

 Query latency (mean, median, 95th percentile) 

 Throughput (queries per hour, MB/s read/write) 

 Resource utilization (CPU, network, IOPS) 

 Metadata service latency and concurrency 

 Scalability curves across client count and dataset size 
 

 
Figure 1. Flowchart illustrating the implementation steps of a Parallel Software Storage 

Architecture 



 
International Journal of Core Engineering & Management 

Volume-8, Issue-03, 2025           ISSN No: 2348-9510 

72 

 

 
III. RESULTS 
This section presents the performance evaluation of the Parallel Software Storage Architecture 
(PSSA) against a traditional Network-Attached Storage (NAS) configuration across multiple 
analytic workload scenarios. Metrics such as query latency, throughput, concurrency scaling, 
metadata efficiency, and system-level resource utilization are assessed. 
 
3.1 Single-Client Performance 
To isolate pure I/O and query execution performance, we first evaluated the architecture under 
single-client workloads. 

 TPC-H Query 3 (1TB Dataset): This query involves multi-table joins with sorting and 
filtering operations. Using the NAS backend, average execution time was 120 seconds. With 
PSSA, execution time dropped to 25 seconds, delivering a 4.8× performance improvement. 
The reduction is primarily attributed to lower disk I/O wait times and minimized metadata 
lookup latency due to distributed access. 

 TPC-DS Query 5 (50TB Dataset): Designed to test complex multi-dimensional joins and 
aggregations typical of real-world decision support systems, this query took 720 seconds on 
NAS. On PSSA—leveraging object storage striping and distributed metadata—the same 
query completed in 120 seconds, achieving a 6× improvement. Notably, query execution 
plans also became more efficient as compute nodes could prefetch data concurrently from 
different storage shards, reducing wait cycles. [8] 

 
These results validate the architectural advantage of decoupling data and metadata paths and 
scaling them horizontally across storage nodes. 
 
3.2 Multi-Client Concurrency 
We next tested how well PSSA and NAS perform under increasing concurrent query workloads 
by scaling client nodes from 1 to 16. The system was subjected to a uniform mix of TPC-H 
queries, each accessing different partitions of the dataset. 

# Clients NAS Throughput (queries/hour) PSSA Throughput (queries/hour) 

1 600 2,900 

4 2,200 9,500 

8 3,800 18,200 

16 5,500 33,000 

 

 Linear Scalability: PSSA throughput scaled nearly linearly up to 16 clients. In contrast, NAS 
performance began to plateau after 8 clients, due to bottlenecks in its centralized metadata 
service and contention on shared network links. 

 Contention Handling: Even as concurrent requests increased, PSSA's architecture avoided 
queue buildup by balancing data access across distributed nodes. Each compute node 
independently fetched partitioned data, avoiding congestion seen in shared-NAS 



 
International Journal of Core Engineering & Management 

Volume-8, Issue-03, 2025           ISSN No: 2348-9510 

73 

 

controllers. 
 
This demonstrated that PSSA can efficiently handle high-throughput, multi-tenant workloads in 
production analytics environments. [9] 
 
3.3 Read/Write Mixed Workloads 
Real-world analytics systems typically involve mixed workloads—ongoing ETL processes 
writing large volumes of data while users run queries in parallel. 

 Simulated Scenario: We initiated a continuous ETL process (writing log-style append-only 
records) while simultaneously executing 10 concurrent analytical queries. 

 Performance Observed: 
o PSSA sustained 4 GB/s write throughput and 6 GB/s read throughput 

simultaneously. 
o NAS struggled beyond 2 GB/s total throughput, with noticeable query slowdowns 

and delayed ETL batch commits. 

 Cause of Advantage: With PSSA, writes are distributed across object storage pools without 
lock-based contention, and reads use separate data streams. This separation of I/O paths is 
critical in maintaining smooth mixed workload operation. 

 
The result demonstrates the robustness of PSSA for hybrid workloads, such as those 
encountered in business intelligence pipelines and real-time dashboards. [10,11] 
 
3.4 Metadata Latency 
Metadata lookup and file stat operations are among the most frequent operations in large 
analytic pipelines, especially during parallel scanning of partitioned datasets. 

 Latency Comparison: 
o In PSSA, average metadata latency was measured at 2.5 milliseconds, with the 95th 

percentile at 5 milliseconds. 
o On NAS, the average was 7.5 milliseconds, with 95th percentile spikes exceeding 15 

milliseconds under load. [12] 

 System Load Behavior: 
o MDS (Metadata Servers) in PSSA maintained <30% CPU utilization even under high 

concurrency. 
o In contrast, NAS’s centralized metadata controller reached full CPU saturation with 

as few as 10 concurrent requests, leading to degraded performance. [13] 

 Design Impact: Sharded and parallelized metadata services in PSSA eliminate single-point 
contention, allowing faster file lookups and parallel directory traversal during complex 
queries. [14] 

 
This aspect is especially valuable in environments with deep nested file structures and frequent 
ad-hoc querying. 
 



 
International Journal of Core Engineering & Management 

Volume-8, Issue-03, 2025           ISSN No: 2348-9510 

74 

 

 
3.5 Resource Utilization 
Efficient use of system resources is critical to both performance and operational cost. 

 Storage Nodes: 
o DSN (Data Storage Node) throughput consistently exceeded 90% of peak NVMe 

read/write bandwidth, indicating excellent disk utilization. 
o Network interfaces reported 10–20 Gbps active throughput per DSN, showing that the 

network fabric was actively utilized rather than becoming a bottleneck. 

 Compute Nodes: 
o Execution nodes reached 70–90% CPU utilization, indicating that bottlenecks had shifted 

from I/O to actual computation—a favorable transition in analytic systems. 

 NAS Comparison: 
o The shared-NAS setup left most compute nodes underutilized due to I/O wait cycles, 

with CPU utilization rarely crossing 50% under the same workloads. 
 
This demonstrates that PSSA ensures balanced load distribution and full utilization of 
expensive compute and storage resources, leading to better ROI. [15] 
 
 
IV. DISCUSSION  
4.1 Why PSSA Works 
1. Distributed I/O Paths: Unlike shared-NAS which funnels all traffic through a central 

controller, PSSA enables parallel I/O directly between compute and storage nodes. 
2. Decentralized Metadata: Metadata services are disaggregated, reducing lock contention 

and internal queueing, thus lowering latency. 
3. Network Utilization: High-speed networking with RDMA offload ensures the storage layer 

moves data efficiently, preventing NICs from being bottlenecks. 
4. Workload Adaptability: Block/object layering allows the system to run diverse analytics 

engines (SQL, OLAP, ML) with optimized paths. 
 
4.2 Trade-offs & Overhead 

 Complexity: Both deployment and orchestration are more complex than monolithic or NAS 
solutions. 

 Metadata Coordination: Sharded metadata requires consensus protocols (e.g., Raft), which 
can add complexity and latency for writes—but this is mitigated in read heavy analytic 
contexts. 

 Recovery and Consistency: Failure handling and rebuild times of erasure-coded data 
necessitate robust monitoring and orchestration. 

 
4.3 Cost Performance Comparison 

 On commodity hardware, PSSA comes at roughly the same per TB cost as NAS, but delivers 
up to 3–5× performance enhancement, providing significantly better return on investment. 



 
International Journal of Core Engineering & Management 

Volume-8, Issue-03, 2025           ISSN No: 2348-9510 

75 

 

 
4.4 Generalization 
Our architecture is applicable beyond SQL analytics: workloads such as large scale machine 
learning, network telemetry, and financial tick analysis benefit similarly from parallel I/O and 
metadata scaling. 
 
 

V. CONCLUSION  
This paper demonstrates that parallel software storage architectures can dramatically accelerate 
analytic workloads compared to traditional shared NAS and direct attach solutions. By 
distributing both data and metadata services across nodes, our implementation realizes 6× 
query speedups, 3–4× throughput improvement, and robust scaling under concurrency. These 
gains stem from eliminating centralized bottlenecks, leveraging network and storage 
parallelism, and intelligently layering block- and object-based APIs. 
 
Although the architecture introduces complexity—in deployment, orchestration, and metadata 
coordination—it proves cost-competitive and operationally feasible with current open-source 
and cloud-native technologies. Future research should explore: 

 Dynamic data placement and query-aware sharding 

 Hybrid in-memory/object layers for ultra-low-latency 

 Global namespace federation across data centers 

 Storage–compute autoscaling for elastic workloads 
 
In conclusion, adopting parallel software storage architectures enables data-driven 
organizations to meet demanding analytics SLAs, increase concurrency, and future-proof their 
infrastructure for the next wave of big-data innovation. 
 
 
REFERENCES 
1. TechTarget. Big data storage. [online] Available at: Link 
2. Niazi, S., Ismail, M., Grohsschmiedt, S., Ronström, M., Haridi, S. and Dowling, J., 2016. 

HopsFS: Scaling hierarchical file system metadata using NewSQL databases. arXiv. 
Available at: Link 

3. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., 
Shenker, S. and Stoica, I., 2012. Resilient distributed datasets: A fault-tolerant abstraction for 
in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked 
Systems Design and Implementation (NSDI). USENIX Association, pp.15–28. Available at: 
Link 

4. Ghemawat, S., Gobioff, H. and Leung, S.T., 2003. The Google file system. ACM SIGOPS 
Operating Systems Review, 37(5), pp.29–43. Available at: Link 



 
International Journal of Core Engineering & Management 

Volume-8, Issue-03, 2025           ISSN No: 2348-9510 

76 

 

5. Xu, L., Plank, J.S. and Ding, Y., 2006. Optimizing Cauchy–Reed–Solomon codes for fault 
tolerant storage applications. In: 5th IEEE International Symposium on Network Computing 
and Applications. pp. 173–180. Link 

6. Fidge, C.J., 1988. Logical time in distributed computing systems. – [On vector-clocks 
protocol.] Link 

7. Jiashu Wu, Y. Wang, J. Wang, H. Wang & T. Lin (2023) ‘How does SSD cluster perform for 
distributed file systems: An empirical study’, arXiv. Link 

8. Exploring Benefits of NVMe SSDs for Big Data Processing in Enterprise Data Centers (2021) 
– NVMe delivers up to 35% lower latency vs SATA in TPC H style workloads Link 

9. The Transaction Processing Performance Council (TPC) (2025) TPC Benchmarks Overview. 
Available at: lInk 

10. Scality (2025) Object Storage vs NAS: Benefits & Definitions. Link 
11. Mikeroyal (2023) MinIO high-performance object storage read/write benchmarking. Link 
12. Sun, P., Wen, Y.W., Duong, T.N.B. & Xie, H. (2016) MetaFlow: a scalable metadata lookup 

service for distributed file systems. Link 
13. Niazi, S. et al. (2016) HopsFS: Scaling hierarchical file system metadata using NewSQL 

databases. Link 
14. Macedo, R. et al. (2023) PADLL: Taming metadata-intensive HPC jobs through dynamic, 

application-agnostic QoS control.Link 
15.   Kang, et al. (2025) Understanding and Profiling NVMe-over-TCP Using ntprof, USENIX—

shows NVMe can deliver millions of IOPS at tens of Gbp Link 
 


