

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

133

HYBRID CLOUD ANALYTICS FOR ENVIRONMENTAL DATA: INTEGRATING

EQUIS, SQL SERVER, PYTHON, AND SNOWFLAKE FOR SCALABLE
COMPLIANCE MONITORING

Pramath Parashar

Data Science Specialist
Independent Researcher, Formerly at Kent State University

Tucson, USA
srivatsa.pramath@gmail.com

Abstract

Environmental data management presents increasing challenges due to the rising volume,
complexity, and regulatory scrutiny of monitoring programs. While traditional systems offer
structured data storage, they often lack the scalability and analytical flexibility required for
timely insights and advanced reporting. This paper proposes a hybrid data analytics frame-
work that integrates environmental data from an on-premise SQL Server–based system into a
cloud-native architecture using Python and Snowflake. The pipeline extracts and pre-processes
structured data from EQuIS through SQL Server Management Studio (SSMS), automates
transformation workflows using Python scripts, and ingests the data into Snowflake for high-
performance querying, trend analysis, and compliance monitoring. Real-world use cases
demonstrate improvements in query performance, dashboard responsiveness, and report
generation efficiency. The proposed solution lays a foundation for modern, automated, and
scalable environmental analytics pipelines that support proactive regulatory compliance and
environmental risk management.

Keywords: EQuIS, SQL Server, Python, Snowflake, Environmental Data Analytics, Hybrid
Cloud Architecture, Regulatory Compliance, Data Pipeline Automation

I. INTRODUCTION

Environmental monitoring generates large volumes of structured data from diverse sources
such as groundwater wells, air quality sensors, and soil testing programs. Managing this data
effectively is critical for ensuring regulatory compliance, maintaining public transparency, and
supporting sustainability initiatives. Many organizations rely on the Environmental Quality
Information System (EQuIS), a widely adopted platform for storing and managing
environmental sampling data [1]. EQuIS typically operates atop Microsoft SQL Server
databases, enabling structured relational storage and compliance-aligned schema definitions
[2].

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

134

Despite its strengths in data capture and organization, EQuIS lacks advanced capabilities for
scalable analytics, real-time reporting, or seamless integration with modern data science
workflows. Analysts often extract EQuIS data manually using SQL Server Management Studio
(SSMS) and process it using tools like Microsoft Excel, leading to fragmented pipelines,
inconsistent results, and limited automation.
To address these limitations, this paper presents a hybrid cloud analytics framework that
bridges on-premise data systems with modern cloud-native platforms. Specifically, we integrate
SQL Server–hosted EQuIS data with Python-based transformation scripts and Snowflake—a
scalable, cloud-based data warehouse that supports elastic compute and high- performance SQL
analytics [3], [4]. This hybrid architecture enables real-time data extraction, automated
preprocessing, and centralized analytical querying, all within a unified and secure pipeline.

The primary objectives of this work are as follows:

 To develop an end-to-end pipeline that connects EQuIS data stored in SQL Server to
Snowflake via automated Python workflows.

 To demonstrate environmental use cases such as contaminant trend detection, regulatory
threshold exceedance alerts, and compliance reporting dashboards.

 To evaluate system performance in terms of query time, automation efficiency, and
scalability across large environmental datasets.

By bridging on-premise infrastructure and cloud services, this architecture empowers
environmental professionals to modernize their analytics workflows and support proactive,
data- driven compliance strategies.

II. RELATED WORK
Environmental data systems have undergone significant evolution in recent years, driven by the
need for centralized reporting, cross-site aggregation, and regulatory transparency. EQuIS has
emerged as a prominent platform in this space, offering tools for managing large volumes of
environmental sampling data, laboratory results, and field observations in compliance with
federal and state guidelines [1]. Its relational schema—backed by Microsoft SQL Server—
provides a solid foundation for structured environmental data management [2].

However, traditional EQuIS workflows are primarily built around manual querying and report
generation. Several studies and industry case reports highlight challenges such as slow query
performance, difficulty in real-time monitoring, and limited integration with modern data
science tools. Analysts frequently rely on SQL Server Management Studio (SSMS) to extract
datasets into spreadsheets, which are then manually curated and interpreted—an error-prone
and time-intensive process.

In contrast, Python has become a dominant tool in environmental data science due to its
versatility in data transformation, statistical analysis, and automation [4, 5]. Libraries like

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

135

pandas and matplotlib have enabled rapid development of data cleaning pipelines, temporal
trend analysis, and even spatial modelling workflows. However, integration of these tools into
enterprise-scale platforms remains limited without robust data orchestration and warehousing
support.

Cloud-native data platforms like Snowflake offer a compelling solution by combining scalable
compute, flexible SQL analytics, and seamless integration with BI tools [3]. While Snowflake is
widely adopted in sectors like finance and healthcare, its application in environmental
analytics—particularly in compliance-heavy domains—is still emerging. A few recent
implementations demonstrate the use of cloud warehousing for storing geospatial and sensor
data, but they typically do not connect with legacy systems like EQuIS or integrate automated
ETL workflows.

This paper addresses this critical gap by designing a hybrid architecture that combines the
structured reliability of EQuIS and SQL Server with the flexibility and scalability of Python and
Snowflake. To the best of our knowledge, this is one of the first fully integrated frameworks
purpose-built for environmental compliance monitoring using this stack.

Figure 1: High-level architecture showing data flow from EQuIS to Snowflake.

III. SYSTEM ARCHITECTURE
The proposed system implements a modular, hybrid-cloud architecture that connects on
premise environmental data systems with scalable cloud analytics. The framework consists of
four primary layers: Data Source, Data Extraction and Staging, Transformation and Integration,
and Cloud Analytics and Reporting. Each layer is designed to maintain data fidelity, enable
automation, and support high-performance analytics workflows. Figure 1 illustrates the
complete architecture.
A. Data Source: EQuIS on SQL Server
EQuIS maintains environmental sampling, field measurement, and analytical results in a highly
normalized schema backed by Microsoft SQL Server [1, 2]. Tables such as DT_SAMPLE,
DT_RESULT, and RT_ANALYTE store data on sample events, parameter measurements, and
regulatory classifications. These datasets form the foundation for all downstream analysis.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

136

B. Extraction and Staging: SQL Queries via SSMS
Using SQL Server Management Studio (SSMS), project-specific queries are constructed to
extract relevant fields by joining normalized EQuIS tables. Queries are typically filtered by date,
location, and analyte group, and are designed to flatten the schema for analysis readiness.
Extracted data is staged either as exported files or passed directly to Python via ODBC
connectors [2].

C. Transformation and Integration: Python Automation
Python scripts serve as the transformation engine in the pipeline. With libraries like pyodbc,
pandas, and numpy, the data is:

 Cleaned for nulls, duplicates, and outliers

 Standardized into consistent units (e.g., mg/L)

 Enriched with derived fields such as rolling averages and exceedance flags

The processed data is loaded into Snowflake using the snowflake.connector library and
structured into analyte-wise or site-wise fact tables for querying [4, 5].

D. Cloud Analytics and Reporting: Snowflake
Snowflake provides elastic compute and cloud-native SQL analytics capabilities. The ingested
datasets are partitioned by site, parameter, and time period, enabling:

 Fast temporal aggregation

 KPI computation for compliance

 Seamless integration with visualization tools such as Power BI [3, 7]

Snowflake’s warehousing layer supports materialized views, scheduled refreshes, and se cure
access control, making it suitable for automated compliance reporting.

Table 1: Performance Summary: Traditional Workflow vs Hybrid Architecture
Metric Traditional Workflow Hybrid Architecture

Query Execution Time ∼25–90 seconds 1–3 seconds

Monthly Report Compilation 4–6 hours/manual <30 minutes/auto

Data Volume Handled ∼100,000 rows >10 million rows

User Access Control File-based sharing Role-based in Snowflake [3, 7]

IV. USE CASES AND ANALYTICS RESULTS
To validate the practical benefits of the hybrid analytics architecture, two real-world use cases
were implemented using historical environmental monitoring data from EQuIS. Each use case
focused on extracting regulatory insights through scalable queries, automated pipelines, and
dashboard visualizations. The results confirm improvements in data handling efficiency,
analytical speed, and compliance transparency.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

137

A. Use Case 1: Groundwater Contaminant Trend Analysis
Objective: Analyze multi-year groundwater data to detect seasonal and long-term trends in
analytes such as uranium and sulfate.
Implementation:

 SQL queries in SSMS extracted data from DT selected well locations.

 Python scripts applied unit harmonization, outlier filtering, and rolling averages.

 Snowflake’s SQL engine computed year-over-year concentration changes and flagged
exceedances based on regulatory thresholds.

Results:

 Query performance improved from ∼25 seconds (on-premise SQL Server) to <2 seconds in
Snowflake [3].

 Analysts identified three locations with consistent threshold violations across two years.

 Dashboards allowed real-time exploration of trends with time sliders and analyte filters.

B. Use Case 2: Automated Monthly Compliance Reporting
Objective: Automate report generation for monthly regulatory submissions, replacing manual
spreadsheet aggregation.
Implementation:

 Python scripts transformed EQuIS data into pivoted tables by location and analyte.

 Snowflake scheduled jobs refreshed summaries daily.

 Power BI dashboards displayed metrics including exceedance rates, location-wise severity,
and compliance scorecards.

Results:

 Report generation time reduced from 4–6 hours to under 30 minutes per cycle.

 Automation eliminated formula errors and report inconsistencies.

 Dashboards supported PDF export and stakeholder-specific access through row-level
security.

V. DATA PIPELINE IMPLEMENTATION
The hybrid analytics pipeline was implemented in four main stages: structured extraction from
EQuIS using SQL Server, transformation with Python scripts, loading into Snowflake, and
scheduled refreshes for analytics delivery. This section details the tools, code interfaces, and
architectural decisions used at each stage.
A. SQL Data Extraction via SSMS
Environmental data was stored in EQuIS using SQL Server as the backend database [1, 2].
Microsoft SQL Server Management Studio (SSMS) was used to query relational tables such as
DT_SAMPLE, DT_RESULT, and RT_ANALYTE. These queries were constructed to:

 Join normalized EQuIS tables using primary/foreign keys

 Filter by sampling location, date, and parameter group

 Output flat, denormalized tables ready for analysis
This query was either saved as a .sql job in SSMS or executed dynamically through Python

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

138

using ODBC.

Listing 1: Example SQL query used in SSMS to extract EQuIS data

Listing 2: Sample Python snippet for transforming EQuIS data

B. Python-Based Data Transformation
Python scripts were used to automate data cleansing and transformation tasks [4, 5]. The
pyodbc package enabled querying SQL Server directly from Python. Once the data was
imported into a Data Frame using pandas, the scripts performed:

 Null value imputation (e.g., forward-fill for time series)

 Unit normalization (e.g., converting µg/L to mg/L)

 Computation of new fields (e.g., exceedance flags, 3-month moving averages)

 Conversion to Snowflake-ready formats

C. Snowflake Data Ingestion and Structuring
Data was uploaded into Snowflake using the snowflake.connector Python package [3]. Tables
were organized by analytic and site, with partitions for date-based querying. The schema
included:

 RESULTS_TBL (sample date, analyte, result value, exceedance flag)

 LOCATIONS_TBL (coordinates, location group, aquifer)

 THRESHOLDS_TBL (parameter-specific regulatory limits)

Uploads used parameterized insert statements or bulk file loading. Snowflake’s automatic
clustering and compression reduced query latencies and storage footprint.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

139

D. Automation and Scheduling
To keep data current, two automation options were used:

 Snowflake Tasks & Streams– to refresh summaries daily

 External Scheduler (Windows Task Scheduler)– to trigger Python scripts and monitor logs
This ensured that dashboards remained up-to-date without manual intervention. Snowflake’s
role-based access control (RBAC) secured each dataset per stakeholder group [3].

VI. PERFORMANCE EVALUATION
To assess the effectiveness of the proposed hybrid cloud architecture, benchmarks were con
ducted comparing the legacy EQuIS + SSMS + Excel workflow against the automated pipeline
built with Python and Snowflake. Evaluation criteria included query performance, reporting
efficiency, scalability, and data integrity.

A. Query Execution Time
SQL query performance was tested across three representative queries: single-analyte filtering,
exceedance summary, and multi-join aggregation. Each was executed in both the traditional
SSMS environment and in Snowflake.
Result: Snowflake’s columnar storage and elastic compute architecture significantly reduced
response times for complex analytical queries [3].

Table 2: Query Execution Time

Task SSMS (Legacy) Snowflake (Proposed)

Single-year uranium query
Monthly exceedance summary

Multi-join trend aggregation (5+ tables)

∼25 seconds
∼90 seconds
∼40 seconds

<2 seconds
∼3–4 seconds
∼1.5 seconds

B. Report Generation Time
Manual report compilation using spreadsheets and pivot tables was replaced by automated
Python-to-Snowflake ETL processes and Power BI visualizations.
Result: The automated system decreased manual effort by over 80% while reducing
inconsistencies and errors caused by spreadsheet formula failures [7].

Table 3: Report Generation Time

Report Type Manual (Legacy) Automated (Proposed)

Monthly compliance report
Quarterly trend dashboard
Multi-site export package

4–6 hours
∼2 days

Not feasible

<30 minutes
∼2 hours

∼15 minutes

C. Scalability Testing
Data volume stress testing was conducted by simulating input datasets of increasing size.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

140

Snowflake scaled linearly while SSMS encountered timeouts.
Result: The cloud-native design allowed Snowflake to support large-scale datasets, suit- able for
regional or historical analysis [3].

Table 4: Scalability Testing

Volume Size SSMS (Legacy) Snowflake (Proposed)

100,000 records
1 million records
10 million records

∼60 seconds
Query timeout
Not supported

∼2 seconds
∼3.5 seconds
∼6 seconds

D. Data Quality and Access Control
The proposed system added RBAC (Role-Based Access Control), lineage tracking, and version-
controlled transformation scripts.
Result: The architecture improved security, audit readiness, and long-term reproducibility
especially important in regulatory environments [6, 7].

Table 5: Data Quality and Access Control

Factor Legacy Workflow Proposed System

Auditability Manual, fragmented Fully traceable

Stakeholder Access File-based sharing Role-based permissions

Script Versioning N/A Git-managed Python

Regulatory Traceability Partially compliant Structured and logged

VII. DISCUSSION
The hybrid architecture presented in this paper has demonstrated measurable benefits in
scalability, automation, and regulatory readiness for environmental data analytics. However, its
deployment also highlighted several practical trade-offs and implementation challenges.
A. Strengths of the Proposed Approach

 Scalability: The ability to process millions of records with minimal latency demonstrates the
viability of Snowflake for large environmental datasets [3].

 Automation: Python scripting enabled full automation of data ingestion, transformation,
and report generation pipelines [4, 5].

 Reproducibility: By centralizing queries and transformations in Snowflake and Python, the
system supports repeatable and version-controlled workflows.

 Integration: The use of standard tools (ODBC, SQL, Python, Snowflake connectors) allowed
seamless integration with existing systems like EQuIS and visualization platforms like
Power BI [3, 7].

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

141

B. Implementation Challenges

 Complexity of EQuIS Schema: The normalized schema required complex joins and domain
knowledge to extract meaningful metrics from tables like DT_RESULT and RT_ANALYTE
[1].

 Connectivity and Security: Secure access from Python to SQL Server via VPN and ODBC
required careful handling of credentials, firewalls, and authentication policies [2].

 Cost Optimization in Snowflake: Query credits and warehouse sizing had to be optimized
to balance performance with cost, especially during development phases [3].

 Skill Set Demands: Teams required cross-functional knowledge in SQL, Python, and cloud
architecture—posing an initial adoption challenge for traditional environmental staff.

Table 6: Design Trade-Offs

Design Area Legacy Workflow

Data Freshness
Scheduled daily refreshes prioritized cost-

efficiency over real-time updates.

Denormalization
Chose analytical speed over strict normalization

by flattening data in Snowflake.

On-Premise Usage Retained SSMS-based access for compatibility
with legacy infrastructure.

C. Lessons Learned

 Start with one analyte and one site, then scale outward to manage complexity incrementally.

 Prioritize metadata governance, especially for tracking analyte definitions, units, and
exceedance logic.

 Use combination of technical KPIs (query time, cost) and stakeholder communication KPIs
(report timing, traceability) to measure success and justify adoption.

VIII. VISUALIZATION LAYER
The final stage of the pipeline transforms analytical outputs into interactive dashboards and
compliance reporting interfaces. This visualization layer plays a vital role in enabling
stakeholders—including analysts, regulators, and site managers—to explore and act on
environmental data in real time.
A. Tool Selection and Integration
Power BI was chosen as the primary visualization tool due to its native Snowflake connector
and support for live queries. Dashboards were built to allow dynamic filtering by analyte,
location, and date range, while retaining security configurations inherited from Snowflake [7].
During pipeline development and ad hoc analysis, Python-based libraries such as matplotlib,
plotly, and seaborn were also used to produce exploratory visualizations and statistical plots
[5].

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

142

B. Visualization Types

Table 7: Visualization Types

Visualization Type Purpose

Line Charts Trend analysis for analytes across time

Heatmaps
Spatial intensity of exceedances across

monitoring wells

Exceedance Bar Charts
Count of threshold violations by monitoring

site

KPI Scorecards Percent of samples in compliance over time

Interactive Maps
Well locations, status over lays, severity

indicators

C. Refresh and Delivery Mechanism
Dashboards are auto-refreshed using scheduled Snowflake warehouse queries. Reports are
exported as PDF, Excel, or web links, and made accessible to stakeholders through role specific
views. Power BI’s integration with Snowflake’s RBAC ensures end-to-end security and
traceability [3, 7].

D. Sample Dashboard Snapshot
Figure 2 shows a sample Power BI dashboard displaying uranium trends across wells, real time
compliance KPIs, and a geographic heatmap with severity-coded markers.

IX. SECURITY & COMPLIANCE CONSIDERATIONS
Handling environmental monitoring data in regulatory contexts demands a high standard of
security, integrity, and traceability. The proposed architecture incorporates several mechanisms
to address these requirements across both the on-premise and cloud layers.
A. Data Access and Authentication
Access to EQuIS databases through SQL Server is controlled via Windows Active Directory
authentication and VPN-secured environments [2]. SQL Server Management Studio (SSMS)
access is role-restricted to authorized environmental analysts. Connections from Python to SQL
Server use encrypted ODBC channels and environment-based credential injection to prevent
plaintext exposure.

In Snowflake, authentication is managed using multi-factor authentication (MFA), IP
whitelisting, and tokenized login sessions. Role-based access control (RBAC) is used to restrict
users by analyte group, region, or organizational role [3]. These controls ensure that only
approved personnel can access sensitive data.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

143

Figure 2: Power BI dashboard showing spatial exceedance, trends, and compliance KPIs

B. Data Encryption and Governance
All data in transit and at rest is encrypted. SQL Server uses Transparent Data Encryption (TDE),
while Snowflake provides automatic AES-256 encryption, managed through key rotation and
audit logs [3]. Snowflake also supports row-level security policies, tag-based data classification,
and object-level privilege auditing, which are essential for meeting standards such as ISO/IEC
27001, SOC 2 Type II, and internal EHS governance requirements.

C. Auditability and Traceability
Each step in the data pipeline is version-controlled and logged:

 Python transformation scripts are stored in a Git repository, tagged with changelogs and
script IDs [5].

 Snowflake provides access logs, query histories, and object modification timestamps.

 Dashboards and reports in Power BI inherit security rules via Snowflake’s data connector,
ensuring consistent access control [7].

This structure supports internal and third-party audits, regulatory reporting trails, and root-
cause analysis of data anomalies.

D. Regulatory Alignment
The system supports compliance with regional and national environmental standards such as
the U.S. Environmental Protection Agency’s Central Data Exchange (CDX) framework [6].
Structured data fields, exceedance flagging logic, and exportable reporting views ensure
traceability to regulatory thresholds and submission protocols.

VII. CONCLUSION AND FUTURE WORK
This paper presented a hybrid cloud analytics framework for environmental data integration,
transformation, and compliance monitoring. By connecting EQuIS—a widely used
environmental data system—with SQL Server, Python scripting, and the Snowflake cloud data
warehouse, the proposed solution addresses critical limitations in traditional workflows,
including performance bottlenecks, manual reporting, and lack of automation.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

144

Through two real-world use cases—contaminant trend detection and automated compliance
reporting—the system demonstrated measurable improvements in query speed, scalability, and
reporting efficiency. Additionally, the architecture incorporates strong security controls, audit
logging, and regulatory compliance features, making it suitable for deployment in enterprise
environmental health and safety (EHS) operations.
Future work may explore several promising extensions:

 Machine learning integration for predictive exceedance detection and anomaly fore casting.

 Real-time data streaming using IoT sensor feeds, integrated with Snowflake’s event driven
processing.

 Geospatial analytics combining EQuIS data with mapping layers and satellite imagery for
risk zone identification.

 Open API endpoints for automated submission to regulatory portals and bidirectional
stakeholder integration.

By bridging legacy environmental systems with cloud-native infrastructure, this architecture
lays the foundation for scalable, intelligent, and future-ready environmental analytics.

APPENDIX
A.1 Sample SQL Query (SSMS Extraction)

Listing 3: Sample SQL query used to extract analyte data from EQuIS

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

145

A.2 Sample Python Snippet

Listing 4: Python script to extract, transform, and load EQuIS data into Snowflake

A.3 Snowflake Schema (Simplified)

 Use either SI or CGS as primary units. (SI units are encouraged.) English units may be used
as secondary units (in parentheses). An exception would be the use of English units as
identifiers in trade, such as ―3.5- inch disk drive‖.

 Avoid combining SI and CGS units, such as current in amperes and magnetic field in
oersted’s. This often leads to confusion because equations do not balance dimensionally. If
you must use mixed units, clearly state the units for each quantity that you use in an
equation.

 Do not mix complete spellings and abbreviations of units: ―Wb/m2 ‖ or ―webers per square
meter‖, not ―webers/m2‖. Spell out units when they appear in text: ―. . . a few henries‖, not
―. . . a few H‖.

 Use a zero before decimal points: ―0.25‖, not ―.25‖. Use ―cm3‖, not ―cc‖. (bullet list)

Table 8: Simplified Snowflake Schema Design

Table Description

RESULTS_TBL
Sample date, analyte name, result value,

exceedance flag

LOCATIONS_TBL Site coordinates, aquifer name, location type

THRESHOLDS_TBL Regulatory limit values for each analyte

REFERENCES
1. EarthSoft Inc., ―EQuIS Professional Documentation,‖ EarthSoft Knowledge Base, 2023.
2. Microsoft Corporation, ―SQL Server Management Studio (SSMS),‖ Microsoft Docs, 2023.
3. Snowflake Inc., ―Snowflake Documentation: The Data Cloud,‖ Snowflake Docs, 2024.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

146

4. Python Software Foundation, ―Python Language Reference, version 3.11,‖ 2023.
5. W. McKinney, ―Data Structures for Statistical Computing in Python,‖ in Proc. 9th Python in

Science Conf. (SciPy), 2010.
6. Environmental Protection Agency (EPA), ―Central Data Exchange (CDX) Program,‖ U.S.

EPA, 2022.
7. Microsoft Corporation, ―Power BI: Data Visualization and Analytics,‖ 2023.
8. B. N. Patel, K. R. Pandya, and S. L. Shah, ―Cloud-based Data Warehousing and Analytics,‖

in Proc. IEEE Int. Conf. Cloud Computing (CLOUD), 2022.

