

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

121

IMPLEMENTING MICROSERVICES ARCHITECTURE IN RETAIL APPLICATION
DEVELOPMENT

Rajesh Kotha

Senior Software engineer at Kroger

Abstract

Microservices architecture is prevalent in retail app development because of its flexibility,
scalability, and robustness. By utilizing microservices, a huge application (monolithic system)
can be partitioned into lighter, autonomous components, each of which may handle its own
specific domain. Utilizing microservices architecture speeds up app development and deployment.
This technology study focuses on service discovery, inter-service communication, and
decentralized data management. This study addresses retailer concerns, microservices' real-time
inventory management, and targeted marketing solutions. Also highlighted are how the
architecture affects operational efficiency, customer satisfaction, and company agility.
Microservices' importance in global operations, innovation, and cross-platform development is
also explored. Microservices have certain advantages, but most issues, like complexity and
security threats, remain. The report discusses future research on automated microservice
monitoring, security, and data consistency, mainly for large retail systems. These insights can give
complete knowledge about how microservices architecture drives growth and innovation in retail

Keywords: Microservices architecture, retail application development, scalability, service
discovery, decentralized data management, operational efficiency, personalized marketing, real-
time inventory management.

I. INTRODUCTION
With rapidly growing retail application development, flexibility, scalability, and efficiency in
solutions are in great demand. Microservices architecture has transformed retail applications by
liberating them from a monolithic system. A microservices architecture-based application is
developed as a set of small autonomous services that implement specific business functionalities
[1]. These services talk to each other using well-defined APIs, providing flexibility, scalability, and
maintainability that was not previously possible. Such an architectural shift is needed by retailers
to integrate inventories modularly with order processing, payment systems, and customer service.
This is because microservices can be developed, deployed, and updated independently of the
system, thus speeding up the development cycles. Microservices design allows cloud-native
development for today's current resiliency and scalability demands. Service discovery, inter-
service connectivity, and decentralized data management enhance the retail application's
reliability. This paper discusses how the microservices architecture has helped in retail application
development based on the core technological ideas presented, its benefits, problems, and the
impact on the retail industry.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

122

II. LITERATURE REVIEW

The literature has extensively discussed the adoption of microservices architecture within
application development, underlining the approach's advantages over more traditional monolithic
systems. Under microservices, the key benefits of modularization relate to service autonomy. By
letting the services operate independently, microservices reduce interdependencies and allow agile
updates, one of the most crucial features for dynamic sectors like retail. This is in direct contrast
with the monolithic system, which is tightly coupled; when one component fails, the whole
application goes down.
Communication between microservices is at the core of the microservices architecture [3]. About
this aspect, quite a few studies have been conducted. R. Karki and Anjana Mahato,indicated that
one could implement lightweight protocols like HTTP/REST, gRPC, or message brokers like
Kafka. This is to enable the microservices to communicate efficiently. The decoupling of services in
this manner allows scaling [3]. The individual service can communicate asynchronously, thereby
supporting the parallel processing of retail tasks related to inventory updates, placing orders, and
processing payments.
As N. Singh et al. present, service discovery and load balancing is another important concept in
microservices architecture. Both service discovery and load balancing are crucial components of
microservices that contemporary systems must consider. Service discovery and load balancing
enable services to find and communicate with one another without manual configuration; thus, the
system will be resilient if retail systems are scaled and increased with more services. This could
benefit retail applications operating in cloud environments with fluctuating traffic.
P. S. Samant further added that decentralizing data management promotes flexibility within
microservices. Instead of relying on one centralized database, each service handles its data.
Specialized data models could be created, each serving specific retail operations such as customer
support, payment, and inventory management. This would enhance the system's performance and
reduce dependency on one point of failure, increasing fault tolerance and data integrity.
The present literature generally underlines the microservices architecture as a vital enabler for
developing agile, scalable, and resilient retail applications.

III. PROBLEM STATEMENT

Modern retail enterprise's growing complexity and scale require shifting from monolithic retail
architecture. Maintaining and scaling monolithic systems rapidly is hard as customer demands
evolve and new features are added. This may lead to slower development cycles, with downtime
during updates hindering market flexibility. Under these systems, debugging issues can be
challenging to isolate and independently solve because of the highly connected nature of
monolithic systems. Because of this, retailers need agile, scalable, and resilient application
development; hence, they go for microservices architecture.

IV. SOLUTIONS

In retail application development, the microservices design solves various problems inherent in
monolithic systems by allowing for more scalability, flexibility, and productivity [4]. The
microservices approach decomposes an application into distinct services that can communicate

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

123

with and work independently. Each microservice encapsulates a business function, which enables
the retail application to become non-monolithic for growth, adaptation, and change. Here is how
inter-service communication, service discovery, decentralized data management, and more
address the challenges of retail application development with microservices.

Fig. 1. Illustration of monolithic and microservice architecture. Adapted from [9]

1. Interaction between services

The principle behind microservices architecture is independent interaction between different
services. Such communication usually relies on light-coupling protocols like HTTP/REST, gRPC,
or message brokers such as RabbitMQ or Kafka. As Retail inventory management, Order
processing, Payment gateway, and Customer support are independent, sharing data and
synchronizing their data depend on not having the full interlinking of these components.

a) REST/HTTP

REST/HTTP APIs remain very popular for inter-service communication. REST allows services to
communicate on the web with HTTP methods like GET, POST, PUT, and DELETE, which is
straightforward for developers to work with. A product catalog service can expose APIs that
return product data in a retail application. The order service may use this API to present product
information when the user submits orders.

b) Asynchronous Message Broker Communication

Retail systems manage asynchronous operations, such as receiving payments and updating
inventory after sales. At this point, Kafka or RabbitMQ allows services to send and receive
messages without delay. For instance, as the spinal cord center for event delivery, Kafka is the
backbone of event-driven microservices designs. It improves the system's scalability and flexibility
by letting services communicate and react to occurrences in real time. For example, if a customer

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

124

initiates a buy transaction, the order service sends a message to the inventory service to update the
stock levels asynchronously. Simultaneously, the order process finishes without any delay. To
enable responsiveness, retail applications can use synchronous and asynchronous communication
for different activity management scenarios in peak transaction traffic situations, such as on Black
Friday.

2. Service Detection

Microservices require service discovery in dynamically detected and communicated contexts, like
cloud infrastructure, where services are frequently scaled up or down [5]. Hardwiring
communication channels makes scaling or adding to monolithic apps problematic. Automation of
service discovery solves this problem in a microservices architecture.

a) Dynamic Scaling, Flexibility

Retail traffic may vary depending on seasons, promotions, or the introduction of new products.
Detecting a service can allow newly deployed services to register immediately with any central
service registry, such as Consul, Eureka, etc. That allows dynamic scaling. Other services can then
query the registry to discover the instances of the service. Payment and order processing services
may be automatically added during peak shopping seasons.

b) Load-balancing/fault tolerance

Service discovery allows for intelligent load balancing. Requests can be divided among multiple
service instances to prevent overloading one instance. If an instance fails, the service registry
automatically directs traffic to healthy instances, keeping the retail application running even after
partial failures. This fault tolerance will be crucial for high-demand services like checkout and
payment processing.

3. Decentralized Data Management

In a monolithic system, all services interface with the same database, often slowing them down. In
a microservices architecture, decentralized data management is followed: each microservice will
have its database or some particular data storage solution.

a) Service-specific databases

By using decentralized data management, every microservice can have an optimized database
schema for its purpose. For instance, the inventory service may store product information in
MongoDB, while the payment service uses MySQL to deal with transaction records. This enables
the separation of tasks, where each service can choose a data model that best serves its purpose
and enhances the performance and scalability of the services.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

125

Fig. 2. Microservice architecture illustration of different services with different data stores.
Adapted from [10]

b) Eventual Consistency and Data Synchronization

One of the significant challenges with decentralized data management is ensuring the consistency
of service. A retail application might place an order by a customer, but the order, inventory, and
payment services need to synchronize data even when each runs independently. The
microservices utilize eventual consistency for updates via event streams such as Kafka [10]. All the
services might not show consistent data, but the system provides synchronization so that each
service can work independently.

4. Agility and Continuous Deployment

The primary benefit of a microservices architecture includes independently building, testing, and
deploying services [6]. Within retail environments where features need to be added, such as
updating payment methods, product search algorithms, or customer service tools, the benefit of
microservices is not only the speed at which innovation can occur without any downtime or
regression in unrelated services.

a) Independent Updates of Services

Each microservice is developed, tested, and then deployed independently. By decoupling these
aspects, teams may focus on specific business functions, such as developing checkout or inventory
management features. A customer assistance bug can be independently fixed and released without
causing any disturbance to services such as the checkout or product catalogue.

b) Continuous Integration and Continuous Deployment (CI/CD)

Agility is critical in retail businesses; microservices enable such with continuous integration and
deployment practices. With the due implementation of CI/CD pipelines, updates to individual
services automatically get tested and deployed into production, reducing the risk of errors and, as

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

126

such, helping to ensure rapid iteration. This is quite convenient for large retail systems where
frequent updates are needed to meet the market demands.

Fig 3. Illustrating CI/CD. Adapted from [2]

5. Security, Resilience

Retail apps handle sensitive client data regarding payment, personal, and order histories. In a
microservices architectural approach, services are isolated and protected.

a) Service Isolation

Due to the separation of each microservice, security vulnerabilities in one-say, customer support
do not necessarily affect the entire application. Service communication should be restricted by
using OAuth2, API gateways, and token-based authentication. For example, the API Gateway
verifies their authenticity before delivering requests to the appropriate microservice. It also
handles logging, rate limiting, and permissions. This consolidated structure makes it significantly
easier for clients to interface with backend services.

b) Failure Resilience

Microservices architecture provides system resiliency by minimizing the occurrence of failures [7].
For instance, the payment process may decrease because of heavy traffic, but the product catalog
and customer assistance remain unaffected. This prevents the retail application from crashing,
improving uptime and dependability, which is essential for consumer happiness. To lessen the
blow of partial outages, developers of microservice applications often employ service-to-service
interactions that employ popular resilience patterns like Circuit Breaker, Retry, and Fail Fast [7].

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

127

6. Performance and Scalability

The most significant advantage of microservices in retail application development is the ability to
scale the services on demand. Scaling a monolithic application is usually inefficient because it
requires scaling all parts together.

a) Scale Horizontally

While doing horizontal scaling, microservices scale the services based on demand patterns. The
traffic for product catalogs and checkout services will surge during a flash sale, while customer
assistance may remain unchanged. With microservices, only the essential services are scaled, hence
the optimum utilization of resources to reduce costs.

b) Performance optimization

Since each service would operate independently, performance bottlenecks would be easier to
locate and optimize. This would help streamline critical services such as product searches,
payment processing, and inventory updates without affecting the other services.

V. IMPACT

The microservices architecture in retail application development allows considerable gains in
operational efficiency, enhancing consumer experience. Scalability is probably one of the most
significant positives [10]. Spikes in traffic are common for retail apps due to holidays and new
products. Each service, such as payment processing or inventory, can be independently scaled in
microservices up or down depending on demand. This helps ensure a glitch-free shopping
experience without burdening the system.

Another advantage is faster and lighter development. Microservices will enable the retail business
to deliver innovative features, fix faults, and improve without disturbing the system. This speeds
up innovation cycles, thus improving market responsiveness to help the merchant to compete.

Other than that, microservices architecture increases system resiliency. Because the services are
isolated, an application would not go down in the case of a payment processing failure. This
improves uptime and reliability, which are both critical to customer trust and happiness in a
competitive retail environment.

In addition, microservices' decentralized nature diminishes technical debt over time, as it may be
changed or removed without overhauling the system. This also increases flexibility and the
lifetime of a system, allowing easy adaptation in shops for new technology and business needs.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

128

VI. USES

The developers of retail applications use microservices architecture to handle complex, dynamic,
and customer-centric systems. The primary use of microservices architecture is to strengthen e-
commerce platforms. Retailers can segregate their apps into product catalogue management,
payment processing, tracking orders, and customer assistance. Each service can be designed,
launched, and scaled independently to ensure top performance and frictionless shopping during
peak traffic times.

Microservices rely on real-time inventory control. Decentralized data management has made it
possible for big retailers with huge inventories in different warehouses or stores to act
autonomously while having synchrony simultaneously. Stock levels are proper, order fulfilment is
faster, and stockouts and over-ordering are avoided.

Microservices enhance consumer experience and personalized marketing. Each microservice can
become independent, including a recommendation engine, customer behavior analysis, and
targeted promotion. Thus, the merchant can use real-time data about each client to personalize
recommendations and offers, increasing customer satisfaction and conversion rate.

Third-party services include microservices for payment gateways, logistics suppliers, and loyalty
programs. Decoupling the services means retail systems can add or replace third-party services
without changes in the main application. This flexibility will enable a merchant to adopt new
technologies or respond to market demands for new payment and delivery methods, improving
customer experience and operational efficiency.

VII. SCOPE

Adopting microservices architecture for developing retail applications is pervasive and
continuously growing with market growth. Scalability and performance improvement are two key
areas where microservices can help. Due to increased online and offline business, retailers need
systems that can handle more traffic, more extensive inventories, and increasingly complicated
customer interactions. Microservices enable efficient scaling of retail applications since each service
may grow independently based on demand instance, order management, or product search.

Another critical factor is innovation and flexibility. To win the competitive race, retailers are
launching newer features, services, and integrations every minute. Decoupling the services with
the microservices architecture increases the pace with which the deployment cycles can happen for
continuous innovation. New capabilities can thus be introduced without affecting the whole
system. This would be critical in ensuring that even the retailers who would like to embrace
certain emerging technologies to advance customer experience or operational efficiency can easily
do so. Among these technologies are artificial intelligence, machine learning, and blockchain.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

129

This scope also extends to international retail. This would allow significant retailers to present
localized services, such as currency conversion or shipping options within a region, or to provide
customer support in the native language. In this way, a single high-power system will give
considerable flexibility in servicing diversified markets.

Another strong example of how microservices architecture outperforms others is its cross-domain
development feature. In contrast to conventional service-oriented architectures (SOAs), consisting
of a single, unified system, microservices partition an extensive program into smaller, more
manageable components that can operate autonomously on different types of distributed
computing platforms [8]. There is less communication overhead and less computing resource
consumption because each microservice only handles a single sub-task or service. The
microservices architecture is perfect for building a versatile platform that is easy to develop and
maintain for applications across domains because of these properties [8]

Whether it's a mobile application, website, or in-store kiosk, the services provided through
microservices remain consistent and effective across multi-service points, allowing customers to
stay enveloped in seamless experiences. Due to such an expansive scope, microservices will
become indispensable for retail technology in the future.

VIII. LIMITATIONS

Microservices architecture introduces a higher level of complexity in application architecture,
making it challenging to manage and monitor multiple services. As the number of services grows,
so does the need for sophisticated tools and strategies to ensure that everything operates smoothly.
This added complexity can lead to increased overhead in terms of development and operational
efforts.

Inter-service communication is another significant challenge. Ensuring efficient and reliable
communication between services can be difficult, particularly when considering network latency
and the potential for failures. The need for services to communicate effectively while maintaining
performance can complicate the architecture further.

Decentralized data management, a hallmark of microservices, brings its own set of challenges.
While it promotes flexibility, it can also lead to difficulties in maintaining data consistency and
synchronization across various services. Ensuring that each service has the most up-to-date
information, especially in real-time scenarios, can be a complex task.

Service discovery is critical in a microservices environment, especially in dynamic systems where
services are frequently scaled up or down. Automating service discovery can be complicated,
requiring sophisticated mechanisms to ensure that services can find and communicate with one
another without manual configuration.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

130

Security concerns also escalate in a microservices architecture. Increased inter-service
communication opens up more avenues for potential vulnerabilities, necessitating robust security
measures to protect sensitive customer data. Implementing these measures can add to the
complexity and overhead of managing the system.

Testing and debugging in a microservices context can be more intricate compared to monolithic
systems. Isolating and identifying issues across multiple microservices can prove challenging, as
failures may not manifest in a straightforward manner.

The deployment of numerous microservices requires significant overhead, as managing their
deployments and versioning demands sophisticated CI/CD practices. This complexity can slow
down the deployment process and introduce risks if not handled carefully.

Additionally, there can be performance overhead associated with managing multiple services,
including the costs of network calls and data serialization, which may impact overall application
performance.

Organizations may also encounter a skills gap, as transitioning to a microservices architecture
necessitates expertise in various technologies and practices. Finding or training personnel who
possess the requisite knowledge can be a hurdle for many businesses.

Lastly, transitioning from a monolithic to a microservices architecture often requires a cultural
shift within teams. This change can be difficult to implement, as it involves altering workflows,
communication methods, and possibly even team structures to adapt to the new paradigm.

IX. CONCLUSION

 Breaks large monolithic systems into smaller, deployable services, allowing for better

resource allocation.

 Promotes faster development cycles, enabling quicker responses to market changes.

 Improves overall performance and reliability of applications.

 Facilitates seamless integration of new technologies and third-party services for optimized

inventory management, tailored marketing strategies, and efficient payment processing.

 Supports complex worldwide operations and enhances consumer experience across various

platforms and geographies.

 Increases complexity in managing communication between services.

 Requires sophisticated mechanisms to locate and interact with services.

 Essential for managing large-scale microservice systems effectively.

 Need for research on how to secure decentralized and interconnected microservices.

 Investigating methods to simplify retail data management in a microservices context.

International Journal of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

131

REFERENCES
1. F. Tapia, M. Á. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, “From Monolithic

Systems to Microservices: A Comparative Study of Performance,” Applied Sciences, vol.
10, no. 17, p. 5797, Aug. 2020, doi: https://doi.org/10.3390/app10175797

2. “CI/CD in Detection Rule Development,” May 9. 2019, https://www.patrick-
bareiss.com/ci-cd-in-detection-rule-development/

3. G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li, “Microservices: architecture,
container, and challenges,” 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), Dec. 2020, doi: https://doi.org/10.1109/qrs-
c51114.2020.00107.

4. F. Tapia, M. Á. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, “From Monolithic
Systems to Microservices: A Comparative Study of Performance,” Applied Sciences, vol.
10, no. 17, p. 5797, Aug. 2020, doi: https://doi.org/10.3390/app10175797

5. J. Han, S. Park, and J. Kim, “Dynamic OverCloud: Realizing Microservices-Based IoT-
Cloud Service Composition over Multiple Clouds,” Electronics, vol. 9, no. 6, p. 969, Jun.

2020, doi: https://doi.org/10.3390/electronics9060969.

6. A. Henry and Y. Ridene, “Migrating to Microservices,” Microservices, pp. 45–72, Dec. 2019,
doi: https://doi.org/10.1007/978-3-030-31646-4_3.

7. N. C. Mendonca, C. M. Aderaldo, J. Camara, and D. Garlan, “Model-Based Analysis of
Microservice Resiliency Patterns,” In 2020 IEEE International Conference on Software
Architecture (ICSA), pp. 114–124, 2020. [Online]. Available:
https://acme.able.cs.cmu.edu/pubs/uploads/pdf/PID6370763.pdf

8. Q. Qu, R. Xu, Seyed Yahya Nikouei, and Y. Chen, “An Experimental Study on
Microservices based Edge Computing Platforms,” arXiv (Cornell University), Jul. 2020, doi:
https://doi.org/10.1109/infocomwkshps50562.2020.9163068

9. Bhagwati Malav, “Microservices vs Monolithic architecture” Dec. 2017,
https://medium.com/startlovingyourself/microservices-vs-monolithic-architecture-
c8df91f16bb4

10. Christian Posta, “The Hardest Part About Microservices: Your Data” Aug. 2016,
https://developers.redhat.com/blog/2016/08/02/the-hardest-part-about-microservices-
your-data#

https://doi.org/10.3390/app10175797
https://www.patrick-bareiss.com/ci-cd-in-detection-rule-development/
https://www.patrick-bareiss.com/ci-cd-in-detection-rule-development/
https://doi.org/10.1109/qrs-c51114.2020.00107
https://doi.org/10.1109/qrs-c51114.2020.00107
https://doi.org/10.3390/app10175797
https://doi.org/10.3390/electronics9060969
https://doi.org/10.1007/978-3-030-31646-4_3
https://acme.able.cs.cmu.edu/pubs/uploads/pdf/PID6370763.pdf
https://doi.org/10.1109/infocomwkshps50562.2020.9163068
https://medium.com/startlovingyourself/microservices-vs-monolithic-architecture-c8df91f16bb4
https://medium.com/startlovingyourself/microservices-vs-monolithic-architecture-c8df91f16bb4
https://developers.redhat.com/blog/2016/08/02/the-hardest-part-about-microservices-your-data
https://developers.redhat.com/blog/2016/08/02/the-hardest-part-about-microservices-your-data

