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Abstract 

 
Python-based Flask applications are widely adopted in the software industry today due to their 
simplicity, flexibility, and ease of integration with other technologies. At peak usage, these 
applications may face an unsustainable volume of HTTP 500 errors, severely impacting end users 
by degrading service reliability, increasing latency, or causing complete request failures. These 
issues are typically triggered by resource exhaustion, unhandled edge cases in application logic, or 
limitations in the underlying uWSGI server configuration. This paper discusses a systematic 
approach to scaling and optimizing such applications by improving the reliability, scalability, 
and availability of the overall stack consisting of NGINX, Gunicorn, uWSGI, and MySQL. We 
present targeted optimizations and tuning strategies that can be generalized to other similar 
architectures. 
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I. INTRODUCTION 
Imagine a scenario in which a Python-based application, built using the Flask framework, is 
experiencing a high frequency of 5xx server errors. These errors are indicative of deeper systemic 
issues related to the application's ability to reliably handle incoming requests. Such instability not 
only undermines user experience but also signals potential architectural or operational 
weaknesses. This paper aims to provide a comprehensive and methodical approach to identifying, 
diagnosing, and mitigating these server-side failures. It outlines a set of practical, field-tested 
strategies designed to improve service resilience and reliability. The proposed solutions are 
targeted toward a diverse range of stakeholders, including site reliability engineers (SREs), 
backend developers, and infrastructure teams. By implementing these recommendations, teams 
can significantly reduce the incidence of server errors, address root causes of recurring failures, 
and strengthen the overall fault tolerance of their applications. 
 
 
II. TARGET ARCHITECTURE 
The target architecture for this research is whereclient requests are first handled by NGINX, which 
serves as a reverse proxy. NGINX forwards requests over a Unix domain socket—a low-overhead 
alternative to TCP when processes run on the same host—to the application server.The application 
server, Gunicorn, is a uWSGI-compatible server that manages multiple worker processes and 
routes incoming requests. Gunicorn passes these requests to a Flask application, which 
implements the core business logic and returns responses. 
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This layered setup—NGINX → Unix socket → Gunicorn → Flask—improves performance, isolates 
failures, and allows each component to be scaled or tuned independently.On the backend, the 
Flask application interfaces with a data persistence layer—in this case, a MySQL database—
responsible for managing application state. Each component in this stack introduces distinct 
performance bottlenecks and potential points of failure, which are analyzed and mitigated 
individually to enhance overall system reliability. Fig. 1. illustrates high level architecture 
experimented in this paper and subsequent sections cover optimizations for different layers. 
 
 
 
 
 

 
 
 

Fig. 1.Architecture Overview 
 
 
III. CLIENT TO NGINX OPTIMIZATION 
Often rate bursts from clients are a leading cause of service degradation. Two main techniques to 
solve this are rate limiting and connection tuning.  
 
A. Rate Limiting 
Rate limiting can be controlled viathelimit_req module provided by NGINX to control the rate of 
incoming requests by enforcing per-client rate limits. Defining a default burst size for all clients is 
crucial, as it ensures fair resource distribution and prevents any single client from adversely 
affecting the accessibility and performance experienced by others accessing the system 
concurrently. 
One plausible configuration is in Fig. 2. Which applies the mylimit zone (which defines the rate 
limit) and allows up to 20 excess requests to be queued before applying the rate limit. 

 
Fig. 2. Nginx Configuration for rate limiting. 

 
B. Connecting Tuning 
In addition to rate limiting, consider further connection tuning to handle incoming traffic 
efficiently via the configurations outlined in Table 1. There are multiple configuration knobs in 
Nginx and these optimizations were experimented with to streamline request flows and reduce 
overhead.  
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limit_conn, 
limit_conn_zone 

Restricts connections per client to 
handle bursty traffic for a client 
with high traffic. 

limit_rate Limits the rate of response 
transmission to the clients. 
Setting a limit can prevent overall 
system from being overloaded 
ensuring QoS for all clients. 

max_conns Controls the maximum number 
of connections an upstream 
accepts. Notably a 0 here means 
no limit. 

queue(NGINXPlus) Paired with max_conns to queue 
overflow requests. 

Table I. Nginx Configuration for client optimization 

 
 
IV. NGINX TO WSGI OPTIMIZATION 
To scale the connection between NGINX and uWSGI effectively, it is crucial to understand how 
NGINX handles upstream communication with uWSGI through the ngx_http_uwsgi_module. This 
module provides a wide range of configurable parameters—such as buffer sizes, queue limits, and 
rate limits—that allow fine-grained control over how requests are forwarded from NGINX to the 
uWSGI server. Proper tuning of these parameters can significantly impact the overall 
responsiveness, stability, and scalability of a web application. 
 
Prior to delving into the intricacies and specifics of these configuration and tuning options, let’s 
take a step-by-step journey through a clear and simplified illustrative example that effectively 
showcases the fundamental performance dynamics and behaviors inherent in a typical Flask web 
application when it is deployed using uWSGI as the application server and positioned behind a 
NGINX web server.Assume the following scenario: 

1. Queries Per Second (QPS): 500 – The application is receiving 500 incoming requests per 
second. 

2. Average Response Time: 2 milliseconds – Each request, on average, takes 2 ms to process. 
3. Total Processing Window: 1 second – We analyze the system over a one-second interval. 
4. Total uWSGI Workers: 10 – The application is served by 10 uWSGI worker processes. 

 
This example helps highlight a key concern in scaling backend services: even small deviations 
from average request latency can cause significant ripple effects. For instance, if just 2% of 
incoming queries—around 10 requests in this case—become slow due to downstream issues (e.g., 
I/O delays or DB lock contention), they can block worker threads longer than expected. Since 
uWSGI does not support true concurrency for most Python workloads, those slow queries 
effectively reduce worker availability and can lead to queuing delays or even HTTP 502 errors if 
the queue overflows or times out. 
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Fig. 3.Request times in milliseconds with 10 and 20 workers, qps: 10, total queries: 100 

 
Fig. 3.presents a scenario involving a slow query with a latency of approximately 5 seconds. With 
10 uWSGI workers and a query-per-second (QPS) rate of 10, nearly 50% of the 100 total queries 
experienced latencies approaching 10 seconds. Increasing the number of uWSGI workers to 20 
resulted in a noticeable improvement in response times.To address performance bottlenecks and 
improve the reliability of NGINX-to-uWSGI communication, several practical strategies can be 
implemented. These configurations help ensure the application remains responsive, especially 
under high load, and can prevent common issues such as 502 errors and worker saturation. To 
solve such scenarios, employ techniques outlined in next set of points. 
 
 
A. Enable Caching 
One of the most effective ways to reduce application load and accelerate response times is to 
implement caching at the NGINX level. By using the uwsgi_cache directive, NGINX can store the 
results of frequently accessed uWSGI responses. This means that for repeat requests, NGINX can 
serve the cached content directly without forwarding the request to the backend 
application.Caching is particularly beneficial for: 

1. Static or rarely-changing dynamic content. 
2. Expensive computations that don’t need to be re-evaluated for each request. 
3. Reducing latency for end users by cutting down on application response time. 

 
 

 
Fig. 4.Request times in milliseconds with and without caching enabled. 
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Fig. 4.depicts the distribution of request latencies for a simple GET operation against a Flask 
application that retrieves a record set from a MySQL database. The -axis shows latency percentiles, 
while the y-axis indicates response times in milliseconds. Under a workload of 100 concurrent 
connections at 1000 QPS, serving a 17,324-byte payload, observed latencies span from roughly 
2,500 ms at the highest percentiles down to approximately 6 ms at the lower percentiles. 
 
Proper cache invalidation policies and cache zones must be defined to ensure consistency and 
memory efficiency. When configured appropriately, caching can drastically lower backend CPU 
usage and increase system throughput. 
B. Increase Buffer Sizes 
NGINX communicates with uWSGI over a socket and uses buffers to temporarily store response 
data. When a response from uWSGI is larger than the default buffer size and no appropriate buffer 
expansion is configured, NGINX may fail to process the response and return a 502 Bad Gateway 
error. 
 
Nginx offers key directives to handle such errors by increasing the buffer size and increasing these 
values ensures that NGINX has enough memory to process larger responses without dropping the 
connection or returning an error to the user. This is particularly important for applications 
returning large payloads, such as JSON APIs or file downloads. 

1. uwsgi_buffers: The number and size of the buffers. 
2. uwsgi_buffer_size: The size of the initial buffer used before additional buffers are allocated. 
3. uwsgi_busy_buffers_size: The size limit for buffers that can be busy serving a response 

before client finishes reading it. 
 

 
 
Fig. 5. illustrates the performance degradation that occurs when buffering limits are set too low. In 
this experiment, we enabled buffering and configured  

1. uwsgi_buffers: 8 buffers of size 128 bytes each 
2. uwsgi_buffer_size: 128 bytes 
3. uwsgi_busy_buffers_size: 256 bytes.  
4. The system was subjected to a query-per-second (QPS) rate of 10, processing a total of 100 

requests. 
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C. Throttle Response Read Speed from uWSGI 
In high-throughput environments, it's important to control how quickly NGINX reads responses 
from uWSGI. Reading responses too quickly can lead to resource contention and downstream 
system overload, especially if the backend or database cannot keep up with the traffic. 
The uwsgi_limit_rate directive can be used to limit the data read rate from uWSGI, effectively 
throttling the response stream. Fig. 6.illustrates the outcomes of experiments performed under a 
concurrent query rate of 10 QPS, comprising 100 total requests and response size of 40 KB with 
uwsgi_limit_rate set to 10K, 20K and 40K. Note with these settings the response time does not 
reduce proportional to the decrease in limit. 
 

 
Fig. 6. Request time in ms with 10K, 20K and 40K limit 

 
Throttling responses can: 

1. Prevent backend saturation by smoothing spikes in traffic. 
2. Reduce the likelihood of worker thread starvation or socket queuing delays. 
3. Contribute to more stable and predictable system performance under heavy load. 

 
By applying the optimizations captured in above points, the system can better handle high traffic, 
avoid bottlenecks, and improve overall performance and reliability. 
 
 
V. UWSGI TO FLASK APPLICATION OPTIMIZATION  
To minimize worker unavailability and ensure graceful degradation, consider the following 
approaches to ensure that the system remains available and responsive, providing users with 
meaningful feedback even during failure conditions. 
 
A. Exception Handling 
Uncaught exceptions can cause worker processes to crash or restart, leading to degraded 
performance, increased latency, and service instability. Implementing structured and context-
aware exception handling helps ensure that your application can gracefully recover from common 
failure scenarios without triggering a full worker restart. Instead of crashing or returning a generic 
500 Internal Server Error, your application should return meaningful and standardized HTTP 
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status codes that reflect the nature of the issue. This enables better observability, easier debugging, 
and more resilient client-side behavior. 
 
Here are some examples of common failure scenarios and the recommended HTTP status codes to 
return: 

1. Deadlocks: If a database operation results in a deadlock, catch the exception and return a 
409 Conflict. This indicates that the request could not be completed due to a conflict with 
the current state of the resource. Clients can be designed to retry such requests intelligently. 

2. Too Many Requests: When rate limiting or throttling mechanisms are triggered, return a 
429 Too Many Requests. This status code informs clients that they have exceeded their 
allowed request quota and should back off or retry after a specified period. 

3. Connection Timeout: If a dependency such as an upstream API or database becomes 
unresponsive and a timeout occurs, respond with a 502 Bad Gateway. This indicates that 
your service is acting as a proxy or gateway and received an invalid response (or no 
response) from the upstream server. 

 
By mapping exceptions to meaningful status codes, you can avoid abrupt restarts, maintain service 
continuity, and provide better diagnostics. Consider logging stack traces and context for 
unexpected exceptions while using structured error responses to aid downstream services and 
client applications in decision-making. 
 
B. Queue Scaling 
The uwsgi.listen parameter controls the size of the socket's listen queue—that is, how many 
incoming connections can be queued before the application starts rejecting them. By default, this 
value is often set conservatively (e.g., 100), which may be insufficient for high-traffic applications 
or during sudden bursts in load. 
 
Increasing the uwsgi.listenvalue allows your application to handle more simultaneous incoming 
connections by queuing them instead of dropping them immediately when all workers are busy. 
This is especially important in scenarios where response times might spike temporarily, such as 
during cache misses, upstream latency, or CPU contention.However, simply increasing 
uwsgi.listen is not enough. You must also ensure that the underlying operating system's 
networking stack is configured to support a backlog of at least the same size.  
 
 
VI. FLASK ↔ MYSQL OPTIMIZATION  
Optimizing MySQL queries is dependent on the nature of traffic an application is serving. In 
certain cases, with high read throughput query optimization by setting up correct indexes and 
tuning the schema should result in enhanced performance. Following techniques are well tested to 
ensure performance gains. 
 
A. Partitioning 
When designing your database, ask yourself whether it's necessary to store all data in a single 
database. If you decide that it is, consider partitioning the data. A common approach in MySQL is 
partitioning by date, which works well for time-series data and is easy to implement. 
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B. Pagination 
Efficient pagination is key to managing large datasets. In this paper, we initially used offset 
pagination but later switched to keyset pagination. This shift provided several advantages, 
including improved query performance and more consistent results. 
 
C. Revisiting Foreign Keys 
While foreign keys enforce referential integrity, they can introduce performance overhead, 
particularly in write-heavy 
applications. In this paper, removing unnecessary foreign keys reduced the strain on CRUD 
operations, as it eliminated the need to constantly evaluate integrity constraints. 
 
D. Revisiting Indexes 
Indexes enhance query performance, but they can negatively impact write operations—such as 
updates, inserts, and deletes—because each change must also update the associated indexes. 
Regularly reviewing and cleaning up redundant or unnecessary indexes is essential for 
maintaining efficiency. Keep in mind that primary keys automatically create indexes, so adding 
extra indexes on the same columns may be redundant. 
 
E. Timeouts 
Long-running queries (those taking more than 10 seconds) can significantly impact database 
performance. Explore solutions for automatically timing out long-running queries, helping 
maintain system efficiency. Putting such solutions via simple scripts can enhance client experience 
multi-fold by ensuring certain clients running heavy queries do not halt the system for clients with 
quicker queries. 
 
F. Stress Testing 
It is essential to ensure that the data layer—often the most critical and performance-sensitive 
component of a web application—can sustain the anticipated query load under both normal and 
peak operating conditions. An inadequately optimized database can become a single point of 
failure, leading to degraded performance. As an example, Fig. 7. Illustrates the use of mysqlslap 
for adhoc load testing. 
 

 
Fig. 7. Sample usage of mysqlslap. 

 
 
VII. CONCLUSION  
Improving reliability, scalability, and availability across each layer of a Python-based web stack 
delivers compounding and synergistic benefits that extend beyond isolated optimizations. When 
tackled holistically, enhancements at the application, web server, and infrastructure levels 
reinforce one another, creating a robust system capable of withstanding varied load patterns and 
failure scenarios. This paper outlines a comprehensive blueprint for engineering teams working on 
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similar Python web applications that encounter performance bottlenecks, service degradation, or 
availability issues. 
The techniques and architectural adjustments described herein are grounded in pragmatic, real-
world scenarios, ensuring they are not only technically sound but also operationally feasible. They 
span improvements in request handling, process management, resource utilization, and 
observability—each selected to strike a balance between implementation effort and measurable 
impact. 
Prior to implementing the optimizations detailed in this paper, the application under 
studyexhibited significant instability, characterized by a recurringspike of HTTP 5xx 
errorsaveraging several per minute—especially during peak traffic hours. This level of 
unreliability posed both user experience risks and operational burdens. 
Following a methodical application of the strategies presented—ranging from tuning the NGINX 
and Gunicorn/uWSGI layers to refactoring Python code paths and improving database access 
patterns—the application achieved notable stability. Post-optimization monitoring revealed that 
5xx reduced by approximately 98%, accompanied by faster response times and reduced 
infrastructure strain. These improvements not only stabilized the platform but also enabled it to 
scale gracefully under high concurrency, demonstrating high availability and consistent 
performance even during traffic surges. 
 
 
VIII. LIMITATIONS 
While this work provides useful insights and improvements, there are a few important limitations 
to keep in mind: 

1. Our findings focus mainly on Python web apps running with uWSGI (or Gunicorn), 
NGINX, and MySQL. If you’re using different languages, frameworks, or databases, the 
results might not apply directly. 

2. The testing and recommendations assume everything runs on a single server or closely 
connected machines using Unix sockets. If your app runs on multiple servers, containers, 
or uses complex load balancing, some suggestions may need adjustment. 

3. We mostly look at 5xx errors caused by app crashes or overloaded servers. Other problems 
like network failures or database outages aren’t covered here in depth. 

4. To catch and fix issues effectively, your system should already have decent logging and 
monitoring. Without those, it’ll be harder to benefit fully from these strategies. 

5. Our tuning assumes moderate to high traffic (around 500 requests per second) and 
reasonable hardware. If your app faces much heavier loads or limited resources, you might 
need extra tweaks beyond what’s described. 

 
 
IX. ASSUMPTIONS 
In the research outline in this paper, we make following assumptions: 

1. The architecture outlined in this paper is assumed to be followed as is of a conventional 
web application backed via Nginx and Mysql as the backend data store with unix domain 
sockets being assumed to be used as communication mechanism 

2. It is assumed that the system experiences spikes upto 500 QPS for the study however the 
proposed solutions are applicable for QPS higher than this. Average response time are also 
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assumed to be well under 5ms.  
3. It is assumed that the application otherwise has enough resources in terms of cpu and 

memory available andthe optimization points are between service intersection points.  
4. It is assumed that sufficient observability is in place to identify operational issues between 

layers before proceeding to applying techniques outlined. 
 
 
REFERENCES 

1. NGINX. (n.d.). ngx_http_limit_req_module. NGINX Documentation. Retrieved May 13, 
2025, from http://nginx.org/en/docs/http/ngx_http_limit_req_module.html 

2. Oracle. (n.d.). mysqlslap. MySQL 8.4 Reference Manual. Retrieved May 13, 2025, from 
https://dev.mysql.com/doc/refman/8.4/en/mysqlslap.html 

3. NGINX. (n.d.). Tuning NGINX for performance. NGINX Blog. Retrieved May 13, 2025, 
from https://www.nginx.com/blog/tuning-nginx/ 

4. Pallets Projects. (n.d.). Flask documentation. Retrieved May 13, 2025, from 
https://flask.palletsprojects.com 

5. uWSGI Project. (n.d.). uWSGI documentation. Retrieved May 13, 2025, from https://uwsgi-
docs.readthedocs.io 

6. Oracle. (n.d.). MySQL performance tuning. MySQL Reference Manual. Retrieved May 13, 
2025, from https://dev.mysql.com/doc/refman/ 

7. Hadi, P. (n.d.). Gist: Flask uWSGI NGINX configuration. GitHub Gist. Retrieved May 13, 
2025, from https://gist.github.com/prasetiyohadi/c24112871943aa21d1bc 


