

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

81

IMPROVING SERVICE RELIABILITY IN PYTHON UWSGI STACKS VIA
PROACTIVE 500 ERROR HANDLING

Nikhita Kataria

Independent Researcher
Manager, Software Engineering

nikhitakataria@gmail.com

Abstract

Python-based Flask applications are widely adopted in the software industry today due to their
simplicity, flexibility, and ease of integration with other technologies. At peak usage, these
applications may face an unsustainable volume of HTTP 500 errors, severely impacting end users
by degrading service reliability, increasing latency, or causing complete request failures. These
issues are typically triggered by resource exhaustion, unhandled edge cases in application logic, or
limitations in the underlying uWSGI server configuration. This paper discusses a systematic
approach to scaling and optimizing such applications by improving the reliability, scalability,
and availability of the overall stack consisting of NGINX, Gunicorn, uWSGI, and MySQL. We
present targeted optimizations and tuning strategies that can be generalized to other similar
architectures.

Keywords—Nginx, uWSGI, Flask, MySQL, Caching, Rate Limiting, Connection tuning.

I. INTRODUCTION
Imagine a scenario in which a Python-based application, built using the Flask framework, is
experiencing a high frequency of 5xx server errors. These errors are indicative of deeper systemic
issues related to the application's ability to reliably handle incoming requests. Such instability not
only undermines user experience but also signals potential architectural or operational
weaknesses. This paper aims to provide a comprehensive and methodical approach to identifying,
diagnosing, and mitigating these server-side failures. It outlines a set of practical, field-tested
strategies designed to improve service resilience and reliability. The proposed solutions are
targeted toward a diverse range of stakeholders, including site reliability engineers (SREs),
backend developers, and infrastructure teams. By implementing these recommendations, teams
can significantly reduce the incidence of server errors, address root causes of recurring failures,
and strengthen the overall fault tolerance of their applications.

II. TARGET ARCHITECTURE
The target architecture for this research is whereclient requests are first handled by NGINX, which
serves as a reverse proxy. NGINX forwards requests over a Unix domain socket—a low-overhead
alternative to TCP when processes run on the same host—to the application server.The application
server, Gunicorn, is a uWSGI-compatible server that manages multiple worker processes and
routes incoming requests. Gunicorn passes these requests to a Flask application, which
implements the core business logic and returns responses.

mailto:nikhitakataria@gmail.com

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

82

This layered setup—NGINX → Unix socket → Gunicorn → Flask—improves performance, isolates
failures, and allows each component to be scaled or tuned independently.On the backend, the
Flask application interfaces with a data persistence layer—in this case, a MySQL database—
responsible for managing application state. Each component in this stack introduces distinct
performance bottlenecks and potential points of failure, which are analyzed and mitigated
individually to enhance overall system reliability. Fig. 1. illustrates high level architecture
experimented in this paper and subsequent sections cover optimizations for different layers.

Fig. 1.Architecture Overview

III. CLIENT TO NGINX OPTIMIZATION
Often rate bursts from clients are a leading cause of service degradation. Two main techniques to
solve this are rate limiting and connection tuning.

A. Rate Limiting
Rate limiting can be controlled viathelimit_req module provided by NGINX to control the rate of
incoming requests by enforcing per-client rate limits. Defining a default burst size for all clients is
crucial, as it ensures fair resource distribution and prevents any single client from adversely
affecting the accessibility and performance experienced by others accessing the system
concurrently.
One plausible configuration is in Fig. 2. Which applies the mylimit zone (which defines the rate
limit) and allows up to 20 excess requests to be queued before applying the rate limit.

Fig. 2. Nginx Configuration for rate limiting.

B. Connecting Tuning
In addition to rate limiting, consider further connection tuning to handle incoming traffic
efficiently via the configurations outlined in Table 1. There are multiple configuration knobs in
Nginx and these optimizations were experimented with to streamline request flows and reduce
overhead.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

83

limit_conn,
limit_conn_zone

Restricts connections per client to
handle bursty traffic for a client
with high traffic.

limit_rate Limits the rate of response
transmission to the clients.
Setting a limit can prevent overall
system from being overloaded
ensuring QoS for all clients.

max_conns Controls the maximum number
of connections an upstream
accepts. Notably a 0 here means
no limit.

queue(NGINXPlus) Paired with max_conns to queue
overflow requests.

Table I. Nginx Configuration for client optimization

IV. NGINX TO WSGI OPTIMIZATION
To scale the connection between NGINX and uWSGI effectively, it is crucial to understand how
NGINX handles upstream communication with uWSGI through the ngx_http_uwsgi_module. This
module provides a wide range of configurable parameters—such as buffer sizes, queue limits, and
rate limits—that allow fine-grained control over how requests are forwarded from NGINX to the
uWSGI server. Proper tuning of these parameters can significantly impact the overall
responsiveness, stability, and scalability of a web application.

Prior to delving into the intricacies and specifics of these configuration and tuning options, let’s
take a step-by-step journey through a clear and simplified illustrative example that effectively
showcases the fundamental performance dynamics and behaviors inherent in a typical Flask web
application when it is deployed using uWSGI as the application server and positioned behind a
NGINX web server.Assume the following scenario:

1. Queries Per Second (QPS): 500 – The application is receiving 500 incoming requests per
second.

2. Average Response Time: 2 milliseconds – Each request, on average, takes 2 ms to process.
3. Total Processing Window: 1 second – We analyze the system over a one-second interval.
4. Total uWSGI Workers: 10 – The application is served by 10 uWSGI worker processes.

This example helps highlight a key concern in scaling backend services: even small deviations
from average request latency can cause significant ripple effects. For instance, if just 2% of
incoming queries—around 10 requests in this case—become slow due to downstream issues (e.g.,
I/O delays or DB lock contention), they can block worker threads longer than expected. Since
uWSGI does not support true concurrency for most Python workloads, those slow queries
effectively reduce worker availability and can lead to queuing delays or even HTTP 502 errors if
the queue overflows or times out.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

84

Fig. 3.Request times in milliseconds with 10 and 20 workers, qps: 10, total queries: 100

Fig. 3.presents a scenario involving a slow query with a latency of approximately 5 seconds. With
10 uWSGI workers and a query-per-second (QPS) rate of 10, nearly 50% of the 100 total queries
experienced latencies approaching 10 seconds. Increasing the number of uWSGI workers to 20
resulted in a noticeable improvement in response times.To address performance bottlenecks and
improve the reliability of NGINX-to-uWSGI communication, several practical strategies can be
implemented. These configurations help ensure the application remains responsive, especially
under high load, and can prevent common issues such as 502 errors and worker saturation. To
solve such scenarios, employ techniques outlined in next set of points.

A. Enable Caching
One of the most effective ways to reduce application load and accelerate response times is to
implement caching at the NGINX level. By using the uwsgi_cache directive, NGINX can store the
results of frequently accessed uWSGI responses. This means that for repeat requests, NGINX can
serve the cached content directly without forwarding the request to the backend
application.Caching is particularly beneficial for:

1. Static or rarely-changing dynamic content.
2. Expensive computations that don’t need to be re-evaluated for each request.
3. Reducing latency for end users by cutting down on application response time.

Fig. 4.Request times in milliseconds with and without caching enabled.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

85

Fig. 4.depicts the distribution of request latencies for a simple GET operation against a Flask
application that retrieves a record set from a MySQL database. The -axis shows latency percentiles,
while the y-axis indicates response times in milliseconds. Under a workload of 100 concurrent
connections at 1000 QPS, serving a 17,324-byte payload, observed latencies span from roughly
2,500 ms at the highest percentiles down to approximately 6 ms at the lower percentiles.

Proper cache invalidation policies and cache zones must be defined to ensure consistency and
memory efficiency. When configured appropriately, caching can drastically lower backend CPU
usage and increase system throughput.
B. Increase Buffer Sizes
NGINX communicates with uWSGI over a socket and uses buffers to temporarily store response
data. When a response from uWSGI is larger than the default buffer size and no appropriate buffer
expansion is configured, NGINX may fail to process the response and return a 502 Bad Gateway
error.

Nginx offers key directives to handle such errors by increasing the buffer size and increasing these
values ensures that NGINX has enough memory to process larger responses without dropping the
connection or returning an error to the user. This is particularly important for applications
returning large payloads, such as JSON APIs or file downloads.

1. uwsgi_buffers: The number and size of the buffers.
2. uwsgi_buffer_size: The size of the initial buffer used before additional buffers are allocated.
3. uwsgi_busy_buffers_size: The size limit for buffers that can be busy serving a response

before client finishes reading it.

Fig. 5. illustrates the performance degradation that occurs when buffering limits are set too low. In
this experiment, we enabled buffering and configured

1. uwsgi_buffers: 8 buffers of size 128 bytes each
2. uwsgi_buffer_size: 128 bytes
3. uwsgi_busy_buffers_size: 256 bytes.
4. The system was subjected to a query-per-second (QPS) rate of 10, processing a total of 100

requests.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

86

C. Throttle Response Read Speed from uWSGI
In high-throughput environments, it's important to control how quickly NGINX reads responses
from uWSGI. Reading responses too quickly can lead to resource contention and downstream
system overload, especially if the backend or database cannot keep up with the traffic.
The uwsgi_limit_rate directive can be used to limit the data read rate from uWSGI, effectively
throttling the response stream. Fig. 6.illustrates the outcomes of experiments performed under a
concurrent query rate of 10 QPS, comprising 100 total requests and response size of 40 KB with
uwsgi_limit_rate set to 10K, 20K and 40K. Note with these settings the response time does not
reduce proportional to the decrease in limit.

Fig. 6. Request time in ms with 10K, 20K and 40K limit

Throttling responses can:

1. Prevent backend saturation by smoothing spikes in traffic.
2. Reduce the likelihood of worker thread starvation or socket queuing delays.
3. Contribute to more stable and predictable system performance under heavy load.

By applying the optimizations captured in above points, the system can better handle high traffic,
avoid bottlenecks, and improve overall performance and reliability.

V. UWSGI TO FLASK APPLICATION OPTIMIZATION
To minimize worker unavailability and ensure graceful degradation, consider the following
approaches to ensure that the system remains available and responsive, providing users with
meaningful feedback even during failure conditions.

A. Exception Handling
Uncaught exceptions can cause worker processes to crash or restart, leading to degraded
performance, increased latency, and service instability. Implementing structured and context-
aware exception handling helps ensure that your application can gracefully recover from common
failure scenarios without triggering a full worker restart. Instead of crashing or returning a generic
500 Internal Server Error, your application should return meaningful and standardized HTTP

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

87

status codes that reflect the nature of the issue. This enables better observability, easier debugging,
and more resilient client-side behavior.

Here are some examples of common failure scenarios and the recommended HTTP status codes to
return:

1. Deadlocks: If a database operation results in a deadlock, catch the exception and return a
409 Conflict. This indicates that the request could not be completed due to a conflict with
the current state of the resource. Clients can be designed to retry such requests intelligently.

2. Too Many Requests: When rate limiting or throttling mechanisms are triggered, return a
429 Too Many Requests. This status code informs clients that they have exceeded their
allowed request quota and should back off or retry after a specified period.

3. Connection Timeout: If a dependency such as an upstream API or database becomes
unresponsive and a timeout occurs, respond with a 502 Bad Gateway. This indicates that
your service is acting as a proxy or gateway and received an invalid response (or no
response) from the upstream server.

By mapping exceptions to meaningful status codes, you can avoid abrupt restarts, maintain service
continuity, and provide better diagnostics. Consider logging stack traces and context for
unexpected exceptions while using structured error responses to aid downstream services and
client applications in decision-making.

B. Queue Scaling
The uwsgi.listen parameter controls the size of the socket's listen queue—that is, how many
incoming connections can be queued before the application starts rejecting them. By default, this
value is often set conservatively (e.g., 100), which may be insufficient for high-traffic applications
or during sudden bursts in load.

Increasing the uwsgi.listenvalue allows your application to handle more simultaneous incoming
connections by queuing them instead of dropping them immediately when all workers are busy.
This is especially important in scenarios where response times might spike temporarily, such as
during cache misses, upstream latency, or CPU contention.However, simply increasing
uwsgi.listen is not enough. You must also ensure that the underlying operating system's
networking stack is configured to support a backlog of at least the same size.

VI. FLASK ↔ MYSQL OPTIMIZATION
Optimizing MySQL queries is dependent on the nature of traffic an application is serving. In
certain cases, with high read throughput query optimization by setting up correct indexes and
tuning the schema should result in enhanced performance. Following techniques are well tested to
ensure performance gains.

A. Partitioning
When designing your database, ask yourself whether it's necessary to store all data in a single
database. If you decide that it is, consider partitioning the data. A common approach in MySQL is
partitioning by date, which works well for time-series data and is easy to implement.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

88

B. Pagination
Efficient pagination is key to managing large datasets. In this paper, we initially used offset
pagination but later switched to keyset pagination. This shift provided several advantages,
including improved query performance and more consistent results.

C. Revisiting Foreign Keys
While foreign keys enforce referential integrity, they can introduce performance overhead,
particularly in write-heavy
applications. In this paper, removing unnecessary foreign keys reduced the strain on CRUD
operations, as it eliminated the need to constantly evaluate integrity constraints.

D. Revisiting Indexes
Indexes enhance query performance, but they can negatively impact write operations—such as
updates, inserts, and deletes—because each change must also update the associated indexes.
Regularly reviewing and cleaning up redundant or unnecessary indexes is essential for
maintaining efficiency. Keep in mind that primary keys automatically create indexes, so adding
extra indexes on the same columns may be redundant.

E. Timeouts
Long-running queries (those taking more than 10 seconds) can significantly impact database
performance. Explore solutions for automatically timing out long-running queries, helping
maintain system efficiency. Putting such solutions via simple scripts can enhance client experience
multi-fold by ensuring certain clients running heavy queries do not halt the system for clients with
quicker queries.

F. Stress Testing
It is essential to ensure that the data layer—often the most critical and performance-sensitive
component of a web application—can sustain the anticipated query load under both normal and
peak operating conditions. An inadequately optimized database can become a single point of
failure, leading to degraded performance. As an example, Fig. 7. Illustrates the use of mysqlslap
for adhoc load testing.

Fig. 7. Sample usage of mysqlslap.

VII. CONCLUSION
Improving reliability, scalability, and availability across each layer of a Python-based web stack
delivers compounding and synergistic benefits that extend beyond isolated optimizations. When
tackled holistically, enhancements at the application, web server, and infrastructure levels
reinforce one another, creating a robust system capable of withstanding varied load patterns and
failure scenarios. This paper outlines a comprehensive blueprint for engineering teams working on

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

89

similar Python web applications that encounter performance bottlenecks, service degradation, or
availability issues.
The techniques and architectural adjustments described herein are grounded in pragmatic, real-
world scenarios, ensuring they are not only technically sound but also operationally feasible. They
span improvements in request handling, process management, resource utilization, and
observability—each selected to strike a balance between implementation effort and measurable
impact.
Prior to implementing the optimizations detailed in this paper, the application under
studyexhibited significant instability, characterized by a recurringspike of HTTP 5xx
errorsaveraging several per minute—especially during peak traffic hours. This level of
unreliability posed both user experience risks and operational burdens.
Following a methodical application of the strategies presented—ranging from tuning the NGINX
and Gunicorn/uWSGI layers to refactoring Python code paths and improving database access
patterns—the application achieved notable stability. Post-optimization monitoring revealed that
5xx reduced by approximately 98%, accompanied by faster response times and reduced
infrastructure strain. These improvements not only stabilized the platform but also enabled it to
scale gracefully under high concurrency, demonstrating high availability and consistent
performance even during traffic surges.

VIII. LIMITATIONS
While this work provides useful insights and improvements, there are a few important limitations
to keep in mind:

1. Our findings focus mainly on Python web apps running with uWSGI (or Gunicorn),
NGINX, and MySQL. If you’re using different languages, frameworks, or databases, the
results might not apply directly.

2. The testing and recommendations assume everything runs on a single server or closely
connected machines using Unix sockets. If your app runs on multiple servers, containers,
or uses complex load balancing, some suggestions may need adjustment.

3. We mostly look at 5xx errors caused by app crashes or overloaded servers. Other problems
like network failures or database outages aren’t covered here in depth.

4. To catch and fix issues effectively, your system should already have decent logging and
monitoring. Without those, it’ll be harder to benefit fully from these strategies.

5. Our tuning assumes moderate to high traffic (around 500 requests per second) and
reasonable hardware. If your app faces much heavier loads or limited resources, you might
need extra tweaks beyond what’s described.

IX. ASSUMPTIONS
In the research outline in this paper, we make following assumptions:

1. The architecture outlined in this paper is assumed to be followed as is of a conventional
web application backed via Nginx and Mysql as the backend data store with unix domain
sockets being assumed to be used as communication mechanism

2. It is assumed that the system experiences spikes upto 500 QPS for the study however the
proposed solutions are applicable for QPS higher than this. Average response time are also

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

90

assumed to be well under 5ms.
3. It is assumed that the application otherwise has enough resources in terms of cpu and

memory available andthe optimization points are between service intersection points.
4. It is assumed that sufficient observability is in place to identify operational issues between

layers before proceeding to applying techniques outlined.

REFERENCES

1. NGINX. (n.d.). ngx_http_limit_req_module. NGINX Documentation. Retrieved May 13,
2025, from http://nginx.org/en/docs/http/ngx_http_limit_req_module.html

2. Oracle. (n.d.). mysqlslap. MySQL 8.4 Reference Manual. Retrieved May 13, 2025, from
https://dev.mysql.com/doc/refman/8.4/en/mysqlslap.html

3. NGINX. (n.d.). Tuning NGINX for performance. NGINX Blog. Retrieved May 13, 2025,
from https://www.nginx.com/blog/tuning-nginx/

4. Pallets Projects. (n.d.). Flask documentation. Retrieved May 13, 2025, from
https://flask.palletsprojects.com

5. uWSGI Project. (n.d.). uWSGI documentation. Retrieved May 13, 2025, from https://uwsgi-
docs.readthedocs.io

6. Oracle. (n.d.). MySQL performance tuning. MySQL Reference Manual. Retrieved May 13,
2025, from https://dev.mysql.com/doc/refman/

7. Hadi, P. (n.d.). Gist: Flask uWSGI NGINX configuration. GitHub Gist. Retrieved May 13,
2025, from https://gist.github.com/prasetiyohadi/c24112871943aa21d1bc

