
 
International Journal of Core Engineering & Management 

Volume-7, Issue-05, 2023            ISSN No: 2348-9510 

319 

 

 

 
INTEGRATING DAST WITH DEVOPS: ACHIEVING CONTINUOUS SECURITY 

TESTING IN CI/CD PIPELINES 
 

Nitya Sri Nellore 
 

 
Abstract 

 
Dynamic Application Security Testing (DAST) is a powerful methodology for identifying security 
vulnerabilities in running applications by simulating real-world attacks. Unlike static analysis, 
which examines code without execution, DAST evaluates applications dynamically, offering 
insights into runtime issues such as authentication flaws, injection vulnerabilities, and security 
misconfigurations. 
 
As software development increasingly adopts DevOps practices, the pace of delivery has 
accelerated, often sidelining thorough security measures. This creates a growing need to integrate 
security testing seamlessly into Continuous Integration and Continuous Deployment (CI/CD) 
pipelines. Incorporating DAST into these pipelines ensures real-time identification and 
remediation of vulnerabilities without hindering development speed. This paper explores the 
growing importance of DAST in modern software development, driven by the increasing 
complexity of applications, the rise of microservices, and the growing sophistication of 
cyberattacks. It presents a framework for integrating DAST into DevOps workflows, highlighting 
key tools, methodologies, and best practices to achieve continuous security testing effectively. 
 
 

I. INTRODUCTION 
The software development landscape has undergone a transformative shift with the adoption of 
DevOps practices. DevOps emphasizes collaboration between development and operations teams 
to deliver software rapidly and reliably. This shift has led to a culture of continuous delivery and 
deployment, where code changes are pushed to production multiple times a day. While this rapid 
delivery model has improved efficiency, it has also introduced significant challenges in ensuring 
the security of applications. 
Dynamic Application Security Testing (DAST) plays a critical role in addressing these challenges. 
DAST involves testing a running application for vulnerabilities by mimicking the behavior of an 
attacker. Unlike Static Application Security Testing (SAST), which analyzes code without 
execution, DAST focuses on runtime behavior, making it highly effective in detecting 
vulnerabilities such as cross-site scripting (XSS), SQL injection, and authentication errors. By 
analyzing an application in its operational state, DAST provides a realistic view of security risks 
that could be exploited in production. 
 
The importance of DAST is growing for several reasons: 

1. Complexity of Modern Applications: Applications today often consist of interconnected 
microservices, APIs, and third-party components. This complexity increases the attack 
surface and requires dynamic testing methods to identify runtime vulnerabilities 
effectively. 



 
International Journal of Core Engineering & Management 

Volume-7, Issue-05, 2023            ISSN No: 2348-9510 

320 

 

 

2. Sophistication of Cyber Threats: Cyberattacks are becoming more advanced, targeting 
weaknesses in application logic and runtime configurations. DAST offers an essential layer 
of defense by identifying such vulnerabilities before attackers can exploit them. 

3. Regulatory and Compliance Requirements: Industries such as finance, healthcare, and e-
commerce face stringent security and privacy regulations. DAST helps organizations meet 
compliance requirements by identifying vulnerabilities that could lead to data breaches. 

4. Increased Adoption of DevOps: The shift to DevOps has accelerated the software delivery 
lifecycle, leaving less time for traditional security testing. Integrating DAST into CI/CD 
pipelines enables continuous security testing without slowing down development 
processes. 

 
Despite its importance, integrating DAST into DevOps pipelines presents unique challenges, 
including the need for automation, minimizing false positives, and ensuring scalability. This paper 
addresses these challenges and presents a practical framework for embedding DAST seamlessly 
into DevOps workflows, ensuring that security remains a priority in fast-paced development 
environments. 
 
 

II. CHALLENGES IN INTEGRATING DAST WITH CI/CD PIPELINES 
2.1. Performance Impact 
DAST scans can be time-consuming, potentially delaying builds and deployments in high-
frequency pipelines. For instance, in applications with a microservices architecture, a complete 
DAST scan might take several hours due to the number of services that need testing. In one case, a 
critical update for a retail platform’s payment gateway was delayed because a DAST scan required 
scanning dynamic interactions across multiple service endpoints. To mitigate this, teams must 
employ targeted scans or parallelized testing to reduce latency. 
 
2.2. False Positives 
High false-positive rates in DAST results can overwhelm developers, leading to security fatigue 
and ignored alerts. For example, a team integrating DAST into a CI/CD pipeline for a healthcare 
application experienced over 200 alerts, only 5% of which were valid vulnerabilities. These false 
positives consumed valuable developer time, delaying feature releases. This highlights the need 
for intelligent filtering mechanisms and machine learning models to prioritize real threats while 
suppressing noise. 
 
2.3. Scalability 
Modern applications are increasingly complex, with microservices and containerized 
environments requiring scalable security testing. Consider a cloud-native application comprising 
50 microservices deployed across multiple Kubernetes clusters. Running DAST scans on such an 
ecosystem requires significant compute resources and sophisticated orchestration to handle 
dynamic service discovery. Without proper scalability, DAST scans may time out or fail to cover 
all endpoints, leaving parts of the application vulnerable. 
 
2.4. Tool Compatibility 
DAST tools must integrate seamlessly with existing CI/CD tools, requiring APIs and 
customization options. For example, a development team using GitLab CI/CD faced challenges 



 
International Journal of Core Engineering & Management 

Volume-7, Issue-05, 2023            ISSN No: 2348-9510 

321 

 

 

when their chosen DAST tool lacked native integration capabilities. Developers had to write 
custom scripts to trigger scans and parse results, increasing complexity and maintenance 
overhead. Ensuring tool compatibility with CI/CD platforms like Jenkins, GitLab, or Azure 
DevOps is essential for smooth integration and adoption. 
 
 
III. PROPOSED FRAMEWORK FOR DAST INTEGRATION 
3.1. Pipeline Integration Points 
DAST can be incorporated at various stages in the CI/CD pipeline: 

 Build Phase: Preliminary scans on static content. 

 Staging Environment: Comprehensive scans on near-production environments. 

 Post-Deployment: Continuous scans to monitor live applications. 
 
3.2. Automation and Orchestration 
Automating DAST scans using tools like Jenkins, GitLab CI/CD, or Azure DevOps ensures 
consistency. Integrating with orchestration tools like Kubernetes helps scale testing for 
containerized environments. 
 
3.3. Dynamic Scan Customization 
Tailoring scan configurations to application architecture minimizes false positives and ensures 
relevant vulnerability detection. 
 
3.4. Feedback Loops 
Integrating DAST findings into developer workflows using tools like Jira or Slack ensures 
actionable feedback and fosters collaboration between developers and security teams. 
 
 
IV. TOOLS AND TECHNOLOGIES 
4.1. DAST Tools 

 OWASP ZAP: Open-source, highly customizable for DevOps workflows. 

 Burp Suite: Comprehensive DAST capabilities with robust reporting. 

 Acunetix: Automated scanning for web applications and APIs. 
 
4.2. CI/CD Platforms 

 Jenkins: Widely used with plugins for DAST tool integration. 

 GitLab CI/CD: Native security features and support for third-party tools. 

 Azure DevOps: Built-in tools and seamless integrations. 
 
4.3. Container and Cloud Support 

 Docker: Pre-configured DAST tools in containers for consistent environments. 

 Kubernetes: Orchestrating DAST at scale. 

 AWS Lambda: Running on-demand scans for serverless applications. 
 
 
 



 
International Journal of Core Engineering & Management 

Volume-7, Issue-05, 2023            ISSN No: 2348-9510 

322 

 

 

 
V. CASE STUDIES 

5.1. E-Commerce Application 
A global e-commerce platform integrated OWASP ZAP with its Jenkins pipeline, achieving a 50% 
reduction in vulnerabilities detected post-deployment. Automated scans and real-time reporting 
enhanced developer awareness. 
 
5.2. FinTech Solution 
A FinTech company using GitLab CI/CD implemented Burp Suite scans in staging environments. 
This approach uncovered critical vulnerabilities before production, improving compliance with 
financial regulations. 
 
 
VI. BEST PRACTICES 
6.1. Shift-Left Security 
Shift-left security refers to the practice of integrating security measures, including DAST, as early 
as possible in the software development lifecycle. By introducing DAST during the development 
or build phase, vulnerabilities can be detected and resolved before they reach staging or 
production environments. For example, scanning individual microservices during development 
ensures runtime vulnerabilities are identified early. This reduces the cost and complexity of fixes, 
as issues caught later in the lifecycle are more challenging to address. 
 
6.2. Baseline Scans 
Baseline scans are lightweight, initial scans conducted to quickly identify low-hanging 
vulnerabilities. These scans are particularly useful in identifying critical issues like misconfigured 
headers, open ports, or simple injection vulnerabilities without delaying the pipeline. For instance, 
running a baseline scan on a staging environment before a comprehensive DAST ensures that 
critical issues are addressed without consuming excessive resources or time. 
 
6.3. Alert Management 
Effective alert management involves reducing the noise generated by false positives and 
prioritizing critical vulnerabilities. Machine learning models and advanced filtering mechanisms 
can be employed to categorize and rank alerts. For example, a DAST tool integrated with a CI/CD 
pipeline can use historical data to suppress non-critical issues that have been reviewed previously, 
ensuring developers focus on high-priority alerts that pose genuine risks. 
 
6.4. Developer Training 
Educating developers on interpreting DAST reports and fixing vulnerabilities efficiently is 
essential for leveraging DAST effectively. Workshops, training sessions, and integrated tools that 
provide remediation guidance can empower developers to address vulnerabilities promptly. For 
example, integrating DAST tools with IDEs to provide real-time suggestions for fixing issues helps 
foster a proactive security mindset among developers. 
 
6.5. Continuous Monitoring 
Continuous monitoring involves running DAST scans post-deployment to identify vulnerabilities 
that arise from changes in the production environment, such as updated dependencies or newly 



 
International Journal of Core Engineering & Management 

Volume-7, Issue-05, 2023            ISSN No: 2348-9510 

323 

 

 

discovered exploits. For instance, a retail application might introduce third-party integrations that 
could introduce security risks. Regular DAST scans ensure these vulnerabilities are detected and 
mitigated promptly, maintaining the application's security posture. 
 
 
VII. CONCLUSIONS  
Integrating DAST into DevOps pipelines is essential for building secure applications in a fast-
paced development environment. By addressing challenges and leveraging automation, 
organizations can ensure continuous security testing without compromising delivery timelines. 
The proposed framework, tools, and practices provide a roadmap for achieving a balance between 
speed and security, empowering teams to deliver resilient software. 
 
 
REFERENCES 

1. OWASP ZAP. "Zed Attack Proxy." [Online Resource] 
2. Burp Suite. "Web Vulnerability Scanner." [Online Resource] 
3. GitLab. "Integrating Security into CI/CD." [Online Documentation] 
4. Kubernetes. "Orchestrating Secure Microservices." [Online Resource] 
5. NIST. "Cybersecurity Framework." [Publication] 

 


