

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

288

INTEGRATING SECURITY PRACTICES INTO DEVOPS PIPELINES

(DEVSECOPS) USING TOOLS LIKE SONARQUBE OR AQUA SECURITY

Anil Kumar Manukonda
anil30494@gmail.com

Sai krishna Gonuguntla

Krishnachaitnaya.1710@gmail.com

Abstract

The introduction of security checks through every stage of Continuous Integration/Continuous
Delivery (CI/CD) pipeline defines the core of DevSecOps beyond basic DevOps practice. This
research demonstrates the process of incorporating security practices into DevOps pipelines
through SonarQube and Aqua Security’s Trivy scanner tools. This paper delves into security
exclusion in traditional pipelines before analyzing DevSecOps adoption patterns in literature
and describing the “security left shift” detection methodology to catch problems early. This
document provides detailed descriptions of SonarQube static analysis and Aqua Security
container image scanning tools and includes a sample implementation with Jenkins pipeline
pseudocode and configuration elements. A real-world example presents the coupled systems to
demonstrate practical deployment. The analysis covers the problems (including complex
pipelines and tool integration difficulties) alongside their solutions and explains the
advantages (which encompass development security benefits and prompt issue monitoring and
regulatory adherence and business success) from implementing DevSecOps operations. The
objective is to prove that development teams can establish a secure rapid application
development system by using proper approaches with security tools.

Keywords: DevSecOps, SonarQube, Aqua Security, Trivy, Jenkins, GitLab CI, CI/CD Pipelines,
Continuous Integration, Continuous Delivery, Static Application Security Testing (SAST),
Dynamic Application Security Testing (DAST), Software Composition Analysis (SCA),
Container Scanning, Infrastructure as Code (IaC), OWASP, GitHub Actions, Jenkinsfile,
.gitlab-ci.yml, YAML, Quality Gates, Security Gate, Secret Scanning, Vulnerability
Management, Compliance, Governance, Security Automation, Secure Software Development
Lifecycle (SDLC), Shift-Left Security, Code Quality, Build Pipeline, Docker, Kubernetes,
Security Policies, CVE Detection, Feedback Loop, Pipeline Notifications, DevOps Culture,
Security Champions, Developer Enablement, Secure Coding Practices, False Positives, Secure
Deployments, Audit Readiness, Traceability, Security Metrics, Security Dashboards, Secure
Containers, Continuous Monitoring, Tool Integration, Pipeline Optimization, CI Tool
Compatibility, Secure Base Images, Security Remediation, Vulnerability Thresholds,
Declarative Pipelines, Parallel Jobs, Automation Scripts, Policy Enforcement, Version Control
Integration, Secure Artifact Management, Role-Based Access Control (RBAC), Secure

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

289

Configuration, Secure Feedback Systems, Secure Build Processes, Secure Code Reviews, Build
Failures, Emergency Deployment Procedures.

I. INTRODUCTION

The present-day requirements of software delivery technology combine efficiency with
protection through measures. DevSecOps emerged as an answer to the security challenges that
resulted from DevOps speed improvements since this new methodology implements security
protocols directly into DevOps operational frameworks [4]. The fundamental idea behind
DevSecOps involves clear cooperation between development and security and operations teams
who perform automated security tests within their CI/CD system. Security team members must
move their security inspection timeline to an earlier period known as “shift left” during the
Software Development Lifecycle (SDLC). Organizations which detect security concerns
throughout the development stages of code commit and testing and build phases can both
prevent expensive late fixes and minimize vulnerabilities from advancing to production.

The implementation of solid security measures within CI/CD pipelines presents organizations
with considerable obstacles. Security practices that append tests manually during final phases
such as pre-release penetration tests result in delayed deployments or post-production
detection of vulnerabilities. The default configuration of CI/CD pipelines introduces security
vulnerabilities because it fails to include essential protective measures that place organizations
at risk of data breaches and non-compliant operations [4]. System developers can integrate
security into the DevSecOps pipeline through first-class citizenship which combines automated
tools to achieve smooth and reliable ongoing checks.

The research addresses three distinct sections. The first section provides DevSecOps details
along with examples to students who need straightforward descriptions. DevOps professionals
receive step-by-step instructions about tool integration with pseudocode and configurations.
Managers receive information about high-level business advantages and challenges together
with corresponding benefits. The paper starts by defining the problem and examines existing
literature after which it proposes a systematic approach to merge security measures into the
development cycle. This paper delivers a representative tool overview of SonarQube (static
code analysis) together with Aqua Security’s Trivy (container vulnerability scanning). It also
demonstrates how to build a DevSecOps pipeline with these tools through examples of Jenkins
pipeline code and YAML configuration in CI. A real situation serves as an example to explain
how security integration progresses step by step. We will examine the integration challenges
together with practical benefits of DevSecOps in the subsequent discussion and then draw a
conclusion. Organizations should be able to deliver software quickly through proper practices
and tools that ensure security standards resulting in the achievement of core DevSecOps
objectives.

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

290

Figure 1: DevSecOps: Integrating Security into Software Delivery Lifecycle

II. PROBLEM STATEMENT
Security operates at a slower pace than CI/CD software delivery since organizations keep
security analysis as a stand-alone manual process. The mismatch produces various problems.
Security vulnerabilities remain undiscovered until very late during development or production
when the costs of remediation become higher and riskier. Security validation remains absent
from standard DevOps pipelines although these pipelines deliver extreme speed and
automated build and test functions and deployment operations. The system allows security
vulnerabilities along with code and dependency problems to pass unnoticed [4]. Security
breaches emanating from basic implementation and maintenance errors such as hard-coded
secrets or unpatched libraries have caused major business impact during major security
incidents.

Security operations which are considered late barriers typically delay the entire release
deployment time. Developers must rush to fix essential vulnerabilities discovered near release
time which results in delayed deliveries coupled with system interruptions. A DevOps cultural
value for continuous delivery encounters major difficulties from this situation [4]. Different
teams often see a contradiction between speed and security measures since they believe
implementing security checks will create delays that slow down their pipeline work. Security
testing lessons occur in separated entities outside the development pipeline which breaks down
DevOps team dynamics.

The main challenge lies in merging CI/CD security functionality with the development process
to identify vulnerabilities early while ensuring the process does not become unnecessarily
delayed. Organizations need to adopt new security culture through DevSecOps processes
simultaneously with tool-based security scan and test insertions into their pipeline stages. This
paper examines the complete process of including static application security testing (SAST) and

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

291

container image vulnerability scanning within the CI/CD environment. This section will
explain the automation process of conducting security flaw detection in source code through
each code check-in. What methods allow organizations to detect known vulnerabilities inside
container images before releasing them? The pipeline requires a failure mechanism to prevent
the flow of content if security standards are not achieved. Organizations can use such solutions
to minimize security threats while keeping DevOps speed while meeting standards.

Figure 2: Security Challenges in CI/CD and DevSecOps Integration: A Problem Statement

Overview

III. LITERATURE REVIEW
The combination of DevSecOps has emerged as a decisive industry and academic solution
against these defects. Industry professionals and researchers characterize DevSecOps as
DevOps development which includes security responsibilities from inception for all members of
the team. Aqua Security defines DevSecOps CI/CD as an approach that integrates DevSecOps
principles between development teams and security personnel and operations personnel for
pipeline automation. In line with the OWASP DevSecOps Guidelines project the best result
comes from quick security issue detection through pipeline security integration which delivers
secure reliable products [8].

Shift-left security: Research repeatedly demonstrates that security needs to be integrated into
the SDLC process during its initial stages. The growing number of security threats has made
security tool integration within CI/CD pipelines into an “inevitable trend” because early
identification (shift-left) finds security issues at lower cost. Numerous industry studies confirm
the efficiency of early detection which holds true when production costs less to resolve bugs
found in coding stages compared to later discovery points [1]. Teams can obtain fast security
feedback about potential flaws through CI/CD integrated security scanning which operates
during each commit process.

Security tooling in pipelines: Different authors describe which tests should be included in a
DevSecOps pipeline. These typically include:

 Static Application Security Testing (SAST): The examination of source code or binaries for

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

292

vulnerabilities can be conducted without actual program execution [5]. During code
scanning SAST identifies security risks such as SQL injection and XSS vulnerability along
with insecure API behavior. The security scanning tools Checkmarx and SonarQube
automate SAST analysis by scanning repository code bases to identify vulnerabilities
alongside unintended coding practices. The SAST process typically functions as part of CI
through build-time execution. SAST tools search for various vulnerabilities from the
OWASP Top 10 by inspecting source code.

 Software Composition Analysis (SCA): The procedure includes verifying open-source
dependencies for known vulnerabilities. The identification of known CVE vulnerabilities
within third-party libraries used by modern applications is possible through SCA tools such
as OWASP Dependency-Check and Snyk. The literature indicates that SCA tools should run
after build time when all components become available. The process of container scanning
overlaps with SCA when organizations build images since both methods reveal vulnerable
packages within the images.

 Dynamic Application Security Testing (DAST): Security experts identify application
weaknesses by conducting simulated security scans (web scans included) against running
systems. After successful deployment in a staging environment you can launch DAST tools
like OWASP ZAP, Burp Suite and Netsparker for runtime vulnerability detection such as
authentication bypass and insecure server settings. Due to the system complexities and long
required time DAST is used sparingly in CI/CD pipelines although researchers include it in
their descriptions of complete DevSecOps implementations.

 Container and Infrastructure Scanning: Cloud-native and containerized deployment
practices require organizations to perform essential scans on their container images along
with Infrastructure-as-Code (IaC). The image scanning tools Aqua Trivy and Anchore
together with Clair examine the operating system packages and software inside container
images. Image scanning tools enable users to identify configuration mistakes and hidden
secrets as well as security misconfigurations in software practices. The combination of
Terraform scan with Checkov or Terrascan serves as an IaC scanning tool that checks for
improper cloud configurations in Terraform and Kubernetes manifests according to Aqua’s
blog [3].

 Secrets Management/Scanning: The detection of API keys and passwords alongside other
secret leaks in code repositories can be accomplished with tools such as git-secrets and
TruffleHog. Quality gates within CI and commit checks serve as the typical timeframes to
run this practice [6].

Many authoritative studies show that pipeline security needs automatic execution of security
activities. The integration of Docker image building and Aqua’s Trivy scanning demonstrates a
CI/CD pipeline at Amazon Web Services which fails building when critical vulnerabilities are
detected. The security baseline checks prevent unsafe images from being published into the
system.

Challenges noted in literature: Different sources identify obstacles in the deployment of

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

293

DevSecOps practices. Implementation of pipeline security encounters three main issues
according to sources: prolonged build times when security testing runs on each build and
mechanic difficulties between security platforms and CI/CD frameworks as well as systemic
resistance from development teams who are unfamiliar with security requirements and view
these evaluations as barriers. The solution to these obstacles exists in intelligent automation
along with the selection of proper instruments and education and assistance from
organizational personnel [4].
The evidence shows security integration with CI/CD pipelines is essential and practical to
implement. The main security practices for CI/CD integration involve SAST and secret
scanning during code review and SCA plus container scanning at build time as well as optional
DAST or manual security checks before release followed by developer-accessible security
results through dashboards and feedback systems. Many experts use SonarQube and Aqua
Security’s Trivy (and additional tools) as essential technology solutions for this domain. The
following sections expand this base by demonstrating implementations within a DevOps
pipeline that utilize SonarQube and Aqua Security’s tools.

Figure 3: DevSecOps CI/CD Integration: Tools, Practices, and Deployment Challenges

IV. METHODOLOGY
A structured approach must be used to integrate security within DevOps pipelines also referred
to as DevSecOps. The operations follow this structured outline for implementation:

1. Identify Pipeline Stages and Security Gates: The first step involves creating a mapping of

software delivery pipeline phases including code and build up to test and deploy while
defining security checks at each phase. Security checks should spread evenly throughout the
entire CI/CD pipeline to avoid consolidating them into a single checkpoint. For example:

 During the code phase (on commit or pull request): Static code analysis (SAST) performs
immediate checks of coding vulnerabilities and linting issues simultaneously with secret
scanning on the repository. Secret scanning of the repository should also be performed
as part of the security scanning procedures.

 During the build phase: The building of software artifacts or container images should

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

294

include SCA to identify vulnerable libraries and container image scanning for
vulnerabilities along with misconfigurations.

 During testing: Security tests should be conducted parallel to functional tests as a single
integrated testing process. Unit tests should validate security functions while DAST tests
could be conducted against a test deployment environment.

 Before deployment (staging): The policy gate serves to block production deployment if
security checks have not passed successfully (this may require no critical SAST results
and no high severity container vulnerabilities).

 Post-deployment/continuous monitoring: Runtime security can be monitored by Aqua
Enforcer or open-source Falco through monitoring provided by Aqua (this extends
beyond CI/CD pipeline into operational needs).

2. Automation and Tool Integration: All checks should run automatically through security

tools built within CI/CD platforms like Jenkins, GitLab CI, GitHub Actions and others. Key
to successful security practices in CI/CD systems lies in automation of all possible security
scans and tests according to “the security scans and tests that take place as part of CI/CD
should be automated” standards [4]. The selection of CI-compatible tools with Command
Line Interface capabilities should be followed by scripting tool execution through pipeline
definition files that include Jenkinsfiles or GitLab CI YAML. The tests should produce their
results which need to be archived in build logs or reports. The tools should produce results
that pipeline can process automatically when possible (SonarQube provides status updates
through its API/webhook protocol and Trivy generates findings in JSON format).

3. Define Security Policies and Criteria: Determine which specifications can make the

pipeline fail. Set up a quality threshold as a code analysis entry gate which prohibits critical
vulnerabilities alongside OWASP Top 10 violations and requires minimum quality
measurements. SonarQube enables administrators to define Quality Gates that use certain
conditions (such as zero critical issues) which determine the test outcome as either Passed or
Failed. You will determine the minimum severity level of vulnerabilities that should trigger
a pipeline failure during container scanning operations through thresholds (for instance fail
the build when Critical or High severity CVEs are detected in images). The defined criteria
ensure that the pipeline system matches organizational risk levels and compliance
standards.

4. Implement Pipeline Steps with Tooling: Next deploy the defined pipeline. The following

section illustrates the deployment through SonarQube SAST tool and Trivy endpoint from
Aqua for image scanning. Generally, the implementation involves:

 The tool environment setup requires SonarQube server and sonar scanner installation or
SonarQube/SonarCloud hosting together with Trivy setup or use of its Docker
container.

 Stage areas will be added to the pipeline with Static Analysis that performs SonarQube
analysis as well as Security Scan that executes Trivy on the built image.

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

295

 The pipeline performs the scans through its built-in commands and plugins. The
execution of Trivy can be achieved through using a combination of SonarQube Jenkins
plugin (with withSonarQubeEnv and waitForQualityGate) together with a shell step in
Jenkins. The corresponding implementations for these pipelines either exist as templates
within GitLab CI or allow running sonar-scanner as a job where Trivy scanning requires
running inside a Docker image.

5. Feedback and Remediation Workflow: Fast transmission of results should occur to

developers without delay. A security issue failure in the pipeline should result in automated
notifications delivered either via the CI server interface or by email or chat integration. The
system requires actionability for security issues so that items become manageable –
SonarQube generates code issue dashboards and Trivy displays CVEs requiring attention.
This connection enables developers to tackle problems which enables them to re-push their
code within the same day. The urgent feedback delivery plays a critical role to avoid
development slowness because security findings become regular build errors for developers
to fix.

6. Continuous Improvement: DevSecOps exists as an ongoing procedure instead of a single

implementation. DevSecOps demands continuous improvement of tools together with
process adjustments. Security teams initiate their security initiatives by performing essential
checks before continuing to enhance their measures. The collection of metrics should
include noting the number of vulnerabilities discovered and resolved in each sprint because
DevSecOps requires tracking these figures for verifying security advancements throughout
time. When a security scan produces excessive incorrect results or runs slowly then teams
should improve the tool or switch to different methods. Additional security checks can be
integrated into the pipeline as the company grows including dependency license checks
together with infrastructure scans. As time passes this method produces an automated
security gate for the project that functions automatically.

Figure 4: An example secure CI/CD pipeline with integrated security steps (adapted from

OWASP DevSecOps Guideline) [8].

The pipeline process dictionary begins with development followed by source code

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

296

administration then build production deployment and server testing before reaching
production deployment. Security tools are incorporated at different phases including Secret
Scanning for code vulnerability detection and Static Analysis using platforms like SonarQube
and Software Composition Analysis supported by Trivy or Clair to identify vulnerable libraries
along with DAST testing in the staging environment. A pool of scans sends their results to a
central vulnerability management system which operates either as DefectDojo or Archery for
tracking purposes. The deployment to production pipeline bypasses production only after
every security scan reveals no vital issues. DevSecOps implements security evaluations across
multiple stages because they do not perform assessments as a single late-stage review.

The illustration depicts SonarQube running as SAST while Trivy (or Clair) executes as container
scanning together with other featured tools. The methodology uses this model which integrates
these tools properly into development stages and establishes automated rules for compliance. A
following section offers insights into SonarQube alongside Aqua Security (Trivy) as part of their
respective roles before moving to an example-based implementation.

Figure 5: DevSecOps Integration: A Structured Approach to Secure CI/CD Pipelines

Figure 6: Secure CI/CD Pipeline Architecture: Aligned with OWASP DevSecOps Guidelines

V. TOOLS OVERVIEW
A. SonarQube (Static Analysis Tool):
SonarQube functions as a popular system which enables continuous evaluation of code security
combined with quality assessment. SonarQube conducts static code analysis through SAST to
detect bugs and code smells together with security vulnerabilities in the source code. The
platform works with various programming languages and gives feedback through CI pipelines
about each updated code version. The SonarQube product exists as an open-core solution which
combines open-source elements with premium versions that offer extended capabilities. One of
the key attributes of SonarQube is its ability to show multiple code quality validation
assessments under a single “all-in-one” dashboard [2].

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

297

SonarQube applies its security assessment tools according to OWASP Top 10 and CERT Secure
Coding standards for DevSecOps implementations. SonarQube analyzes code to locate hard-
coded credentials and identifies SQL injection risks and buffer overflows while detecting
multiple other vulnerabilities in code. The Security Rating (A through E) of a project emerges
from SonarQube's analysis while it determines to fail a build whenever a project breaches the
Quality Gate definitions. In SonarQube a project satisfies the defined Quality Gate when it
meets specified conditions such as “No Blocker or Critical vulnerabilities” and “Code coverage
greater than 80%.” The Quality Gate marker becomes Failed when any defined condition is not
satisfied.

Integration: SonarQube offers smooth integration capabilities for all types of CI tools. Jenkins
allows developers to add SonarQube analysis through its plugin that includes two steps:
SonarScanner CLI operation and Quality Gate result monitoring. The SonarQube server
connection credentials can be supplied through withSonarQubeEnv during execution of the
scanner within Jenkins pipelines. Using waitForQualityGate, Jenkins can make inquiries to
SonarQube for assessment results while the Quality Gate tasks happen in background. At any
time when new code introduces a high-severity issue which fails to meet security standards the
pipeline operation will stop and alert developers about the policy that forbids critical
vulnerabilities.

The sonar-scanner Docker image allows integration of SonarQube with GitLab CI/CD while
SonarCloud serves as an integration portal for SonarQube and GitHub Actions. The security
analysis needs to be executed automatically for every pull request and commit type. Using
SonarQube developers access documentation about vulnerabilities through its web interface
which shows exact lines and instructions for fixing security issues. Through such feedback
loops developers handle security problems by treating them as they would unit test errors with
the intention to resolve them before merging code.

A DevSecOps pipeline obtains the following benefits from SonarQube implementation:

 Static analysis for code vulnerabilities: An automatic system performs security flaw
analysis of written code.

 Quality gating: The platform enables building interruptions whenever quality/security
standards are not achieved so dangerous code stays blocked from advancing.

 Developer-friendly feedback: The platform showcases issues through a dashboard as well
as displays decorations on PRs to facilitate early problem resolution (when enabled through
particular integrations). Issues that need multiple tools (linters and separate security
scanners) for handling are now managed in one solution through SonarQube. The security
function of SonarQube enhances CI/CD implementation by serving as a central element to
merge security standards.

B. Aqua Security Tools:
Aqua Security operates as a company dedicated to cloud-native and container security

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

298

solutions. Aqua Security provides commercial software in the Aqua Platform alongside well-
known DevSecOps open-source tools which they develop. Aqua Security provides Trivy as a
notable open-source tool that enables vulnerability scanning of containers alongside other
artifacts.

Trivy provides a straightforward single-file tool which detects both security issues and secrets
along with configuration mistakes in container images as well as file systems and Git
repositories. The tool draws vulnerability database information from multiple sources which
include CVE databases of operating system distributions together with GitHub advisory
reports. Trivy uses container packages and libraries to discover existing vulnerabilities and
presents CVE identifiers together with severity counts and applicable fixes where possible. The
Docker image scanning performed by Trivy can identify past OpenSSL library flaws by
showing which security update resolves them. Through Infrastructure-as-Code scanning Trivy
identifies both misconfiguration problems and hard-coded secrets in code documentation [7].
The Trivy security tool detects platform weaknesses at the same time as identifying
configuration errors and secretive data and produces an SBOM (Software Bill of Materials)
summary report.

Trivy serves the DevSecOps pipeline as part of either the build phase or pre-deployment phase
to verify deployment of non-vulnerable images. Automation in the CLI enables CI-friendly
deployment because of its fast working speed. A common pattern is:

 Build the Docker image (e.g., docker build -t myapp:latest .).

 Run Trivy to scan myapp:latest. For example: trivy image --exit-code 1 --severity CRITICAL,
HIGH myapp:latest. Trivy stops with code 1 (failing) when it detects security issues of the
designated severities through the --exit-code 1 parameter. The CI job automatically
produces a failure result when high or critical vulnerabilities appear during its operation.

 Trivy outputs a report of vulnerabilities. A pipeline stores the vulnerability results as
artifacts or present them in log files. Security teams enable Trivy to produce JSON reports
which they feed into their central vulnerability management systems (such as Aqua's
platform or DefectDojo).

With its commercial platform Aqua CSP the company provides a policy engine together with a
user interface. Aqua Security enables its users to build Assurance Policies which establish rules
to block images containing critical vulnerabilities and unapproved base images. The Aqua
platform works as a security gate to block image deployment when integrated with CI when the
image violates established policy rules. The platform's management functions allow
organization leaders to review scan outcome information from various locations within the
organization. This paper examines the Trivy open-source tool for container scanning purposes
because it demonstrates the integration of DevSecOps techniques.

The Aqua security platform also includes Tracee and Kube-bench as tools apart from Trivy
which allow for eBPF-based runtime security and Kubernetes security benchmark analysis. The

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

299

security framework provides multiple application points within DevSecOps where Kube-bench
operates as a security benchmarking tool through CI pipelines. Trivy functions as the main CI
solution from Aqua when it comes to image scanning operations. Trivy stands out as the key
open-source tool among other scanners (Anchore’s Syft/Grype and Snyk Container) because of
its user-friendly interface and broad support which leads to its selection as a CNCF incubating
project.

A CI/CD integration with Trivy functions smoothly since users can run it as a basic command-
line application. CI pipelines must only ensure availability of Trivy through binary installation
or utilization of the official aquasec/trivy container. The absence of a required server base
makes Trivy easier to set up than its server-based equivalent SonarQube. A Jenkins CI/CD
administrator can execute Trivy image security scans through a Docker container step targeting
the newly created image. The Trivy image is usable directly within GitLab CI jobs while it can
also be installed through built-in scripting features. Users who rely on GitHub Actions have
pre-constructed scanning tools for Trivy applications. The output from the system allows
operational failure or warning alerts according to policy strictness regulations.

The main efforts of Aqua Security within their development phase include:

 Vulnerability Scanning of Artifacts: Trivy evaluates both built containers and files to
determine their absence of known vulnerabilities and hidden secrets.

 Infrastructure Scanning: Through its config file extension Trivy makes sure that
deployment manifests maintain security standards during the evaluation process.

 Policy Enforcement: Advanced installations that use either Aqua’s platform or open-source
policy code enable you to implement organization-wide security rules across CI systems.

 Continuous Update: Through continuous database updates from feeds Trivy detects newly
disclosed critical CVEs during the subsequent pipeline run for all previous code which is
essential for continuous security.

The combination of SonarQube and Trivy ensures our organization achieves full application
code security alongside full container/infrastructure security. SonarQube detects security flaws
in the programming code before application creation while Trivy identifies component
vulnerabilities after application transformation to become a container but before deployment.
The tools supply prompt execution results to programmers through their respective feedback
systems. We will present implementation and configuration examples for these tools when we
construct a CI/CD pipeline in the following section.

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

300

Figure 7: Overview of SonarQube and Aqua Security Tools for DevSecOps Integration

VI. IMPLEMENTATION
This section demonstrates the process of designing a DevSecOps pipeline with SonarQube and
Aqua Security’s Trivy integrated into continuous integration and delivery workflows. A
python-based CI configuration equivalent to Jenkins Pipeline is shown along with its YAML-
based form for general understanding. The implementation will cover:

 Executive code analysis through SonarQube occurs as part of the build process.

 Quality gate failure will stop the pipeline execution if critical issues are discovered.

 A container image of the application goes through the process of building.

 The system uses Trivy to conduct container image vulnerability scanning.

 The pipeline execution will fail whenever critical vulnerabilities surface because of the
scanning process.

 The deployment takes place only after all tests successfully complete.

 Before proceeding, some setup is assumed:

 A running SonarQube server must provide accessible credentials to Jenkins CI through
either a SonarCloud instance. The SonarQube system requires a newly created project with
an authentication token retrieval process.

 The Jenkins system possesses the SonarQube plugin with active server configuration that
enables proper function of withSonarQubeEnv('SonarServer'). An individual can choose to
execute sonar-scanner using environment variables instead of using the SonarQube
environment.

 Trivy functions as a Jenkins agent installation (alternatively through Docker execution
environment).

 Both SonarQube token and potentially container registry credentials (when pushing images)
are stored in secure repositories located in Jenkins credentials store and CI variables
respectively.

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

301

The following shows an example code using Jenkins Pipeline (Declarative) for integration:

Figure 8: code for Jenkins Pipeline (Declarative) for integration

In the above Jenkinsfile:

 Static Code Analysis stage: The combination of with Sonar Qube Env and Gradle Sonar
plugin enables analysis transmission to SonarQube. The user can execute the sonar-scanner
command as an alternative. We pass the SONAR_TOKEN securely. SonarQube receives the
code analysis for asynchronous processing afterwards.

 Quality Gate stage: The wait for Quality Gate (abort Pipeline: true) command enables
SonarQube to send analysis results through web hook or polling which then determines the
stop or continue of the pipeline. Each application that produces an "ERROR" Quality Gate
status at this step will trigger pipeline failure (which ends the execution). The pipeline
ceases operation when code examines by SonarQube detect policy violations such as new
vulnerabilities or excessive code smells.

 Build Docker Image stage: A Docker file executes to generate an image within the container.
The deployment of non-containerized applications does not require this stage since we are
assuming a containerized application setup.

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

302

 Security Scan (Image) stage: Runs Trivy on the built image. The command includes --
severity HIGH, CRITICAL to analyze high-risk threats while using --exit-code 1 will trigger
the task failure if threats are detected. This stage needs --ignore-unfixed (as demonstrated in
the next stage’s script) to eliminate unfixable vulnerabilities from reporting or custom
severity level adjustments based on organizational policies. The snippet uses the command
"|| true" to avoid Jenkins immediate termination so that we could address it within the
script block. A different method for handling the exit code is shown in the commented
section.

 Evaluate Scan Result stage: The script actively checks the exit status of Trivy as part of its
operating procedure. The deployment stage would become failed in practice when Trivy
identifies security issues by returning exit code 1. The system should interrupt the pipeline
operation directly at that stage. The script example shows the steps needed to check for and
then create a detailed error message through program execution. The pipeline execution
fails as an outcome of image scan vulnerability detection. A summary of Trivy found
vulnerabilities can be viewed in the Jenkins console and attached reports along with the
output.

 Deploy stage: This instance triggers execution only after every stage completes without
failure in the build process. The execution continues only when the previous stage already
achieved success status. The safety measure prevents us from deploying failing images from
security scans. From this position the command functions here as an echo and developers
would normally launch their Docker image to a registry to activate cluster deployment in
production.

The pipeline represents DevSecOps because both code quality and built image security checks
must succeed to allow the deployment to proceed. The developers must resolve the SonarQube
code issues before fixing dependencies which Trivy detects as vulnerable such as updating the
base image (for example). All stages of the pipeline would pass when new deployment runs
start and software receives deployment approval because all known security issues received
proper resolution.

YAML CI/CD Example: This following GitLab CI (.gitlab-ci.yml) configuration exhibits a
simplified representation of the described system:

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

303

Figure 9: code for GitLab CI (.gitlab-ci.yml) configuration

In this GitLab CI example:

 A SonarScanner Docker image serves as the code analysis platform inside the sonarqube-
sast job. One option to set a quality gate in GitLab involves using Sonar's webhook
functionality or relying on SonarQube's built-in gating mechanism (even though we
avoided automatic gating in this YAML there are API options to obtain quality gate status).

 The trivy-scan job depends on the official Trivy container to conduct the security scan

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

304

against the image produced by the preceding job. The pipeline needs to fail when build exits
with a code 1 so we set allow_failure to false. The job execution fails according to GitLab
when Trivy reports any issues in the assessment process.

 The deploy job uses when: on_success (default) and depends on previous jobs succeeding,
so it only runs if both build and scans passed.

 All processes presented here explain the inherent functioning of integration. You would
customize the pipeline system according to both your programming language and your CI
platform. The application of GitHub Actions includes the SonarCloud action together with
the Trivy action or a Trivy customization step.

Quality Gate and Alerts: The failure of the pipeline because of security problems demands
immediate notification of designated personnel. Outside of Jenkins users can set up email alerts
in addition to chat connectivity when pipeline runs end in failure. The platform of SonarQube
features an automatic alert system for newly added issues. All popular CI tools enable users to
send failure alerts through Slack and Teams by making dedicated security failure settings. Such
failures receive quick response because of proper notification systems.

A key part of implementation involves the correct action for false positive results alongside
dealing with minor security issues. During the first scans SonarQube detects a high number of
pre-existing bugs and Trivy discovers numerous CVEs of low severity. Teams build DevSecOps
capabilities by starting with new-issue only quality gates (SonarQube supports new code gate
definition which validates new code vulnerabilities but leaves existing vulnerabilities
untouched). The team should begin by enabling only critical severity checks with Trivy before
expanding the scan as their skills develop. By using a step-by-step method developers stay
protected from being confronted with hundreds of findings during their first day of use.

The pipeline effectiveness can be validated by creating specific issues to run tests against it. To
enhance the functionality, you can input a confirmed vulnerable dependency into the system or
insert an insecure code block that SonarQube should detect. The process enables the adjustment
of rules by either creating new SonarQube rules or modifying Trivy's ignore lists when needed.

A successful SonarQube and Trivy deployment within CI/CD pipelines needs initial setup
work along with pipeline configuration yet becomes effective continuous quality monitors after
installation. The subsequent part of this paper contains a case study showing the practical
results when deploying this approach.

VII. CASE STUDY
A hypothetical (but realistic) scenario of DevOps security integration will be explored through
the development of a web application. Acme Corp is developing a cloud-native web application
that contains Java Spring Boot backend technology together with React front end technologies.
Docker enables containerization of their application before Kubernetes deployment. The team

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

305

operates DevOps through automatic CI/CD system Jenkins yet they started by running unit
tests and deployments while conducting security assessments beyond their pipeline
sporadically. Acme Corp moves to DevSecOps through utilization of SonarQube with Aqua’s
Trivy after avoiding multiple security bugs.

Step 1: Setting up Tools: A SonarQube server (Community Edition for trial) gets installed by
the team before they create projects to represent both backend and frontend operations. Their
Jenkins build agents make use of Aqua’s Trivy through deployments of the Trivy binary or
Docker-based scanning methods. A security policy specifies two fundamental requirements
along with essential code standards that must pass all tests (no critical or high vulnerabilities
present in code or base images and no weak vulnerabilities discovered in code). SonarQube
implements a Quality Gate system which triggers failure conditions when either critical security
issues appear or when code coverage reaches below 70%. The Trivy tool operation will trigger a
failure when container image contains either High or Critical vulnerabilities.

Step 2: Pipeline Integration: An update exists in the Jenkinsfile that uses the example shown in
a previous section. When developers commit code:

 The execution of Stage 1: Static Analysis with SonarQube is initiated by Jenkins as a
response to trigger events.

 The introduction of a risky code snippet like Java’s Runtime.exec() unsafe usage along with
potential SQL injection vulnerabilities would trigger a failure. The software analysis system
within SonarQube detects such occurrences as security vulnerabilities. A critical new issue
prevents the Quality Gate from passing. The build status becomes marked as failed by
Jenkins after waitForQualityGate. The deployment phase fails to move forward since the
pipeline stays halted.

Step 3: Developer Feedback and Remediation: The build failure which stems from SonarQube
Quality Gate prompts Jenkins to inform the team members through email and Slack
communication. SonarQube dashboard for the project displays a specific issue which appears as
"SQL injection vulnerability: use parameterized queries instead" with both file location and line
number details [6]. The developer addresses the faulty code by applying prepared statements
and input sanitization methods before executing another push and repository commit. This
time, SonarQube analysis passes (no critical issues). The pipeline moves on.

Step 4: Build and Container Scan: The application builds successfully and Jenkins builds a
Docker image. Next, Trivy scans the image. Imagine the base Docker image was python:3.9-
alpine for the frontend (if it was a Node or Python service for simplicity). Trivy reports a High
severity vulnerability in one of the OS packages (e.g., an Alpine package with a known CVE).
Trivy’s output might be something like:

usr/lib/libcrypto.so.1.1 (OpenSSL) - CVE-2022-0778 - High - DoS vulnerability in OpenSSL 1.1.1

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

306

Because this is High severity, Trivy exits with code 1. Jenkins flags the Security Scan stage as
failed. The pipeline stops before deployment, indicating a vulnerable component.

Step 5: Remediation of Image Vulnerability: A team performs inspections of Trivy-generated
results. The team detects that the base image has an outdated version. The developers modify
the Dockerfile to select a newer base image with version python:3.9.10-alpine because it
contains the fixed OpenSSL library. They will choose to place the unfixable vulnerability into
Trivy’s ignore list according to their policy but they might also decide to switch base images
instead. They rebuild the image. The subsequent pipeline execution reveals no High or Critical
flaws to Trivy yet possibly some existing low/medium vulnerabilities remain according to
policy rules. The scan passes.

Step 6: Deployment: The deployment phase begins after Trivy and SonarQube staging results
show passing status. The application deploys first to staging then to production while ensuring
security levels significantly rise. The entire security-analyzed deployment process taking 10-15
minutes fits well within their operational flow. Security checks function simultaneously within
the workflow and avoid previous delays of days or weeks between checkpoints.

Outcomes: Throughout the following sprints Acme Corp detects various advantages.

 Security issues receive rapid feedback for developers through SonarQube. The junior
developer who pushes code containing weak hash algorithms fails immediately when
SonarQube finds that issue because the tool requires using strong algorithms. The team
learns about and fixes security issues during the same day instead of security reviews
identifying the issue at a later time. The team develops an increased security consciousness
thanks to this approach.

 The number of production-ready vulnerabilities declines through this security solution.
Patterns of unintentional vulnerability discovery through deployed images used to occur
rarely yet they did occur. As a security entrance Trivy currently performs its gatekeeping
duties. The pipeline acts as a protective measure against future critical CVEs in base images
because Trivy maintains database updates so deployments remain halted until builders
update the images with patched bases. The organization's preparedness reduces potential
threats to a significant degree.

 The pipeline suffered frequent failures during integration since they resolved 50 security
vulnerabilities identified through SonarQube and various libraries flagged by Trivy. They
had identified multiple issues but resolved them progressively until the whole system
quality improved. Part of their learning involved writing custom rules for SonarQube and
modifying Trivy to exclude unimportant issues. The pipeline noises have decreased during
the project while meaningful quality warnings and errors became more noticeable.

 Importantly, pipeline speed remained acceptable. The analysis through SonarQube took
several minutes and Trivy scanning required between 30 seconds and 1 minute of execution
time. The increased confidence through this trade-off proved to be worthwhile. The team
handled any performance decline by adding additional build executor resources as well as

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

307

streamlining Sonar's evaluation to only check essential rules to shorten analytical times.
Reports from the literature validate such real-world scenarios. In a parallel fashion the earlier
SEI project integrated SonarQube along with its container checks system. The use of a single
integrated toolSonarQube proved better than multiple separate linters because it simplified
their pipeline operations and improved its effectiveness. The team learned about constant
maintenance requirements for the pipeline through their experience of suspending
development because they later discovered SonarQube had accumulated numerous warnings
thus demonstrating the need for continuous issue resolution to facilitate smooth delivery [2].
The strategy at Acme to resolve problems immediately maintains both low technical debt and a
clear passing pipeline status.

Leadership at Acme enjoys increased sleeping peace as a result of implementing DevSecOps
into their operations. Simple metrics show that no critical SonarQube vulnerabilities or high-
severity CVEs appear in the last 5 builds through image scanning which serves as proof for
security compliance and client questions about safety. The system's release speed remained at a
steady pace and Acme avoided time-consuming emergency hotfix deliveries because of early
bug detection. Security integration leads teams to achieve superior software quality while lower
risk appears hand in hand with a development team who fully embraces security
responsibilities.

Figure 10: DevSecOps Integration: Acme Corp Case Study Scenario

VIII. CHALLENGES
The implementation of DevSecOps together with SonarQube and Aqua Security tools brings
benefits to the table while producing obstacles during pipeline integration. Organizations must
understand these challenges because they need preparations for their resolution.

 Added Pipeline Complexity: The number of tools or checks implemented in a CI/CD
pipeline directly leads to system complexity. Pipeline development proceeds through a
combination of security checkpoints instead of basic build-test-deploy operations. The total
length along with complexity of the pipeline tends to increase. Security implementation in
CI/CD pipelines leads to management challenges that can produce “unwieldy or difficult to
manage” situations according to Aqua Security experts. The management of tool

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

308

configurations together with credentials and potential dedicated infrastructure maintenance
tasks like SonarQube server maintenance falls to the teams. The main hurdle for secure
pipeline development involves streamlining the integration process yet ensuring platform
compatibility with container deployments and producing straightforward pipeline
commands. Additionally managing security results from container analysis and static
inspections requires proper preparation. Security teams either create reporting dashboards
or choose tools like DefectDojo to gather all findings in one location.

 Potential Impact on Delivery Speed: Security tests are considered a significant concern
because they are expected to negatively impact the pipeline speed. Security scans which
lengthen a former 5-minute build duration to 10 to 15 minutes often prompt developers
toward impatience that could lead them to try skipping checks. Security approaches
implemented without proper planning have the ability to worsen development speed. A
complete dynamic scan needs many hours to execute thus it is not practical to conduct this
process during every CI run. The effectiveness depends on establishing optimal pipeline
security by executing quick essential tests with each commit submittal and running
extensive scans (such as DAST) either in parallel or with less frequent execution. The
caching mechanisms employed by SonarQube and Trivy prevent unnecessary repetition of
vulnerability database searches by enabling incremental analysis and database cache storage
respectively. Development teams can execute specific scanning tools directly from their
machines using pre-commit checkpoints for secrets and linters to discover problems ahead
of time which decreases failures in the pipeline. One can achieve faster security review times
through automation yet proper optimization is required to maintain an efficient pipeline
system.

 False Positives and Noise: Security tools earn a reputation for reporting nonexistent
security issues (false positives) alongside low-risk matters in their context. Dev team
frustration alongside failed pipelines can occur when SonarQube identifies a vulnerability
that the members deem non-important or when Trivy detects a vulnerability within unused
libraries. The management of these false findings requires developers to either modify rules
through tuning or tag SonarQube vulnerabilities as "won't fix" and include proper
explanations when disabling Trivy CVE detection. A preliminary investigation period exists
before the security gate to prevent it from detecting common minor problems. Tool validity
could be questioned by developers when they spend too much time working with
unnecessary processes or rules. The process of locating optimum security checks which
detect genuine threats without causing routine interruptions requires continuous
improvement between security gate overreach and developer interruptions. The teamwork
matures when the tools get properly set and the team members understand which security
issues need immediate attention.

 Tool Integration and Compatibility: Every CI/CD system has different levels of
compatibility with individual security tools. The legacy security tools can lack Application

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

309

Programming Interfaces as well as need users to interact through graphical interfaces. Our
organization finds SonarQube and Trivy compatible with CI systems yet some businesses
operate with scanner tools that create difficulties when automating their processes. Scanner
programs that function on Windows systems create an incompatibility challenge with Linux
CI agent environments. The CI/CD security guide from Aqua states that out-of-the-box
compatibility problems lead to “complex manual implementation” in certain situations.
Open-source tools comprise our integration since they provide solid integration capabilities.
The key maintenance tasks for these tools include regular updates of SonarQube and its
vulnerability databases since neglecting these activities may impair the pipeline's
functionality. A Docker implementation of tools (running scanners in Docker) helps
overcome environment challenges. The DevOps team must guarantee that the CI
environment meets all its dependencies because it needs Java for the scanner and Docker-in-
Docker for image creation as well as sufficient memory capacity for Sonar analysis.

 Security Expertise and Culture: Security awareness within a team cannot be achieved
simply through adoption of tools. The shift towards better security requires elements from
organizational culture as well as conceptual awareness. Only developers who understand
SonarQube and Trivy outputs will have the necessary skills to solve reported issues
effectively. A security issue that triggers pipeline failure will result in both delays and
frustration if developers lack the necessary skills to address it. Developers who encounter
the “SQL Injection vulnerability” notification will often feel unable to address the problem
unless they receive proper training as well as mentoring. The starting reaction from
developers consists of perceiving code analysis as operational oversight whereas
operational groups fear image scanning reduces deployment speed. The successful
implementation of these checks depends on management backing as well as explanations
showing that they protect product quality and prevent future disasters. Group members
from the development team should participate in rule tuning because it fosters their
acceptance of the process. Using stakeholder involvement from an early stage and creating
basic security processes helped SEI DevSecOps team members receive acceptance and detect
workforce education requirements. The integration of security practices into the standard
development lifecycle (supported by recognition when pipelines show complete check
results) creates an environment of DevSecOps.

 Maintaining Pipeline Health: Security checks that have been established should be
maintained consistently. The system requires rule updates in SonarQube according to new
coding standards while quality gate thresholds should adjust based on the codebase
development. Technical debt will come back to cause problems by neglecting the
SonarQube dashboard for prolonged periods. The SEI study revealed that right after the
pipeline was configured for use they started developing features but discovered a
considerable amount of accumulated errors eventually made the pipeline stop working
leading them to understand continuous pipeline monitoring is essential. Balancing pipeline
discipline stands as a major challenge because security and failure incidents must be

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

310

resolved immediately rather than being avoided. The continuous commitment to
DevSecOps includes occasional improvements to prevent false positive results and updates
of Trivy to newer versions plus occasional refactoring of tests.

 Balancing Security and Flexibility: The team needs to deploy hotfixes and urgent changes
despite security check failures when necessary although the reasons behind these failures
remain unrelated. The rigid nature of pipeline restrictions creates deployment challenges
because there must exist an emergency procedure enabling required overrides. The team
must maintain an emergency bypass procedure which needs proper authorization before a
check is skipped (such as a configuration flag for overlooking SAST testing on hotfix
branches). The implementation of emergency fix delivery procedures serves as a process
solution which enables critical updates even when security requirements are temporarily
disabled while ensuring their security bypass remains exceptional.

The solutions to overcome these problems combine both technological approaches with human
execution methods. Some tips:

 Begin your efforts with a focused approach such as implementing SonarQube scanning
alone first then proceed to add additional elements later.

 You should perform gradual optimization by determining which pipeline stage takes most
time then investigating the possibility of parallel execution or selecting frequent scan
intervals like daily full scans instead of committing to per-commit incremental scans.

 Developers will learn to understand SonarQube issues and Trivy reports through
workshops so they perceive these tools as supportive rather than restrictive.

 Security champions should oversee the permanent enhancement of Sonar profiles along
with Trivy ignore lists while the organization should align this work as an ongoing process.

 The use of performance metrics demonstrates progress through tracking critical
vulnerabilities found in productive systems which eventually reach zero counts signifying
the effectiveness of implemented measures.

Teams who can understand potential obstacles can develop initial prevention plans. The team
should reserve sprints for SonarQube detection work to stop the findings from accumulating or
build CI infrastructure with proper capacity to manage the higher workload. DevSecOps
requires careful management to optimize the benefits which remain greater than any
introduced complexities according to field consensus.

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

311

Figure 11: Challenges and Solutions in DevSecOps Pipeline Implementation

IX. BENEFITS

Organizations achieve various advantages from the successful pipeline integration of
DevSecOps practices which impact both security enhancement and software quality together
with accelerated delivery speed and improved business results. Some major advantages have
appeared.

 Early Vulnerability Detection and Prevention: Early identification of security issues arises
as the main direct advantage during the development stage. The implementation of code
and container scanning through CI leads teams to detect security flaws during development
periods before deployment or only after breaches occur. The early discovery of security
issues results in significant reductions of repair expenses and intervention resources
necessary to address them. Early discovery and solution of problems throughout the
development process saves considerable time along with financial resources. When
SonarQube detects an evaluation function (eval()) threat in code during a pull request
through its analysis tool the developer fixes the problem to stop it from reaching production
configuration. Taking preventive action at development times works to stop future security
incidents. The detection of many significant security flaws including SQL injections and
deserialization bugs through static analysis would have stopped these vulnerabilities from
entering production. The practice of container scanning stops deployments of images
containing known CVEs because it serves to keep both software and dependencies modern
and secure.

 Automated Compliance and Audit Readiness: Security checks within DevSecOps pipelines
generate documents that track security verification procedures. The build process generates
reports as artifacts that may include results from SonarQube analysis and Trivy
vulnerability identification. The security checks in DevSecOps pipelines serve to enforce
compliance standards (for PCI DSS, ISO 27001 and others) by requiring codes that pass
review before deployment. Security policies activate automatically through the pipeline
because it prevents deployment of artifacts that fail to meet security requirements. The

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

312

method of compliance integration eliminates the need for additional efforts. The team
should be able to present pipeline quality gate reports and scanning evidence to
demonstrate their methodology for security checks. Integration with these checks results in
delivering secure products that both pass security verification and adhere to assurance
standards which constitutes continuous security instead of one-time verification efforts
according to Aqua Security. The implementation of these measures results in better
governance practices as well as minimizes unexpected security issues during the release
period.

 Reduced Risk of Security Breaches: The software passes through multiple levels of
automated testing by the time it becomes operational. Vulnerable areas decrease in number
through this process which reduces the security targets available to potential attackers. The
implementation of DevSecOps reduces vulnerability risk to nearly minimum levels despite
the fact that no system can eliminate vulnerabilities completely. The development team fixes
vital issues that emerge before software release takes place. The software that reaches final
production status contains a minimal amount of known vulnerabilities. A constant pipeline
operation ensures the detection of new security threats such as library CVEs that would get
identified during software rebuilds. Such security measures make it less probable for
organizations to run software containing outdated dependencies or human security errors.
The result of these practices leads to stronger security positions. The cost of dealing with
potential breaches along with financial losses and reputational damage cannot be clearly
measured yet end up being enormous – DevSecOps operates as preventive insurance that
removes numerous common security flaws through its systematic approach.

 Faster Iteration with Confidence (Quality Improvement): Security implementation proves
to increase development speed during extended periods even though it contradicts typical
intuition. Identifying problems early results in the prevention of prolonged delays which
would be required to fix the accumulation of problems. The authors of the SEI study found
that regular maintenance of problems enables continuous delivery which is one of the core
principles of DevSecOps. The need for bug firefighting decreases at the end because
continuous monitoring keeps bugs under control. The error-detecting features of the
pipeline cause software developers to write code with enhanced discipline thereby resulting
in improved overall quality (beyond security practices and typically producing fewer
generic bugs). Directly from the pipeline teams gain more reliable confidence because they
understand that their safety as well as functional requirements get tested. When teams
maintain faith in their development practices through automated pipelines they can deploy
quicker since they feel secure about immediate deployment when the pipeline emerges as
green (which follows continuous delivery principles). With separate security systems
failures in tests result in continuing doubts about hidden vulnerabilities thus leading to
manual verification or delayed release schedules. Fast releases become possible during
mature DevSecOps operations because the system performs automatic quality assurance
checks on all components.

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

313

 Improved Collaboration and Shared Responsibility: DevSecOps fosters a culture of shared
responsibility for security. All team members including developers testers and ops
personnel regularly interact with security concerns without security being restricted to its
own separate administrative group. Continuous collaboration between development teams
and security teams eliminates the outdated notion of internal competition between the two
departments. Secure design features enter developers' initial coding process because
pipeline detection functions are programmed to prevent insecure code execution. The
containerization and deployment responsibilities of operations team members include
hardening base images together with configurations since Trivy will perform these checks.
Security professionals store their knowledge directly in the pipeline through rules and
checks while enabling them to concentrate their time on advanced problems rather than
reviewing every new code submission. The collaborative approach demonstrated by
managers results in secure development because teams work towards a united purpose to
provide secure software. The SEI implementation of Minimum Viable Process brought
development and security and operational teams together at the start allowing them to
define training needs and implement continuous improvement monitoring. DevSecOps
ensures all members of an organization operate from a shared process and timetable.

 Continuous Improvement Through Metrics: The gathered information from these tools can
lead organizations toward better performance. SonarQube presents a set of metrics that
contain vulnerability counts with security hotspot ratings. A matter of iterations will show
teams how their metrics advance from Security Rating C to A which creates motivation
along with measurable evidence of advancement. Management defines improvement OKRs
consisting of (Objectives and Key Results) such as “reducing code smells average to 30%” or
“eliminating all critical security problems from the backlog” which the team tracks with
SonarQube metrics. The analysis of container scan vulnerabilities through time helps
demonstrate if the dependency management system is enhancing its capabilities. The
introduction of specific metrics that assess code security and quality provides its own
advantage since it creates observable metrics. Teams today obtain live security metrics that
display their posture during the build process whereas security previously only existed as
an ambiguous idea with incident counts as measurement. The research conducted by IEEE
DevSecOps presents metrics which define success factors for DevSecOps through
measurements of vulnerability response time and introducted versus eliminated
vulnerabilities each release contains. The collection of these metrics becomes automated
when tools support integration into the system. Measurable process improvement like
accountability derives from this monitoring which enables permanent evolution of the
process. Project issue spikes allow management to investigate their root causes in order to
allocate resources for finding solutions (the problem could stem from new team member
training needs).

 Business and Customer Trust: Organizations implementing DevSecOps can produce
software products with both high speed and trustworthiness for delivery. The banking and

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

314

healthcare sectors along with their customer base have heightened their interest in software
security following recent regulatory developments. Organizations that prove their
DevSecOps deployment has a solid pipeline have the opportunity to gain market
advantage. The presence of such a system decreases the probability of costly data breaches
that result in trust loss from customers. The team can deliver quick incident responses
through re-running the pipeline followed by automatic deployments because DevOps
agility merges with security awareness. The implementation of DevSecOps leads to a
reduction in security defect costs for managers to observe. Most security fixes occur
seamlessly throughout normal workflow because developers remain on their scheduled
projects rather than completing critical security updates independently. Organizations gain
better delivery timelines predictability through this approach while ignoring this advantage.
Python code and its security remain consistent mutually because secure code generates
high-quality results which reduces project interruptions while ensuring progress stability.

A joint use of SonarQube with Trivy from Aqua Security within pipelines produces the
following advantages:

 Safety measures exist in both code and containers which reduces the number of
vulnerabilities reaching the production environment.

 Faster fixes and less technical debt.

 The automation of security activities creates more human capacity for innovative work.

 The DevSecOps team operates as a unified unit which embeds security into all operations
(security functions as an ambient system).

 SonarQube integration together with Aqua Security’s Trivy provides the business with the
ability to deploy updates frequently without fear.

The substantial advantages obtained from adopting DevSecOps make it a necessary step for
organizations. Defining these principles enables security to evolve from halting the
development process into a process enhancement that improves both products and workflow.
The original setup expenses return numerous times as incidents are prevented and operational
teams achieve faster and safer movements.

Figure 12: Advantages of Successful DevSecOps Pipeline Integration

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

315

X. CONCLUSION

The industry needs to adopt DevSecOps as its next-stage evolution in order to face continuous
delivery practices while defending against continuous cyber threats. The paper provides
extensive guidance about integrating security into DevOps deployment pipelines through
SonarQube alongside Trivy by Aqua Security. Our initial step recognized development
followed by security as a separated process since security needs to blend as a foundational
element starting at the code commit stage through to deployment time. Standard pipeline
methods enabled attackers to penetrate companies yet under DevSecOps the complete code
transformation lifecycle receives security scans to cut organizational vulnerabilities.

Research shows that implementing SAST and container scanners during the early stages
(known as shift-left) has become a best practice in development. Such a methodology requires
automated execution together with proper sequencing of checks with ongoing feedback
provisions. The visual pipeline diagram depicted the stacking of various security features
within Continuous Integration and Continuous Delivery while providing details about the
operation of SonarQube along with Trivy. Technical feasibility to integrate these tools was
shown through examples of Jenkins pipeline and GitLab CI without complex implementation
processes. These implementations function as conceptual models that allow teams to convert
them into frameworks which align with their existing technologies.

The analytical case demonstrated how DevSecOps operates in real projects revealing enhanced
code quality and successful detection of vital defects that would other wise get through. The
experiment demonstrated important lessons learned from actual implementation examples
(firstly to maintain an integrated pipeline process and secondly keep it active). The team
examined both pipeline complexity issues with tool noise and cultural barriers which required
mitigation strategies. The DevSecOps journey includes solving these challenges because it
demands an ongoing improvement approach together with collaboration rather than choosing
tool installation alone.

The approach delivers multiple substantial advantages involving vulnerability discovery before
incidents occur to reduce expenses and prevent incidents while enabling automated policy
enforcement for consistency and enabling steady delivery with elevated security position that
supports business customer benefits. DevSecOps removes security from its development tax
status to turn it into a core part of quality assurance practices which developers handle as easily
as running unit tests. The pipeline design methodology helps produce software that is more
durable and reliable by its structural composition.

The paper presents the ROI to managers through the reduction of breaches, improved incident
recovery times, and consistent predictable software releases after the initial investment. DevOps
professionals can use the provided technical details along with pseudocode examples to
develop CI/CD implementations in their workplace. Students with newcomer status gain

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

316

understanding of theoretical application through the paper's clear definitions of terminology
alongside process tools.

DevSecOps tools together with techniques are showing substantial improvements in their
development. The standard practice will be security scanners included as built-in functionality
within platforms such as GitHub code scanning alerts and GitLab security scanning capabilities.
Future improvements will include AI-based code analysis and advanced supply chain security
check processes among other developments that will result in further seamless integration. The
core DevOps fundamentals will stay intact including securely built software plus fast delivery
which requires automation together with collaboration.

Organizations seeking to merge security mechanisms into their DevOps systems through
SonarQube combined with Trivy solutions can achieve this integration effortlessly. Through
this alignment both development necessities and security demands can be achieved to produce
software at speed and with security as its main focus. The implementation of DevSecOps
practices allows organizations to strengthen their software supply chain protection while
preserving their necessity for agility within present-day business competition. The path to
achieve this DevOps pipeline presents cultural and skill-based challenges yet it delivers a
pipeline solution that releases code to production with total assurance and tranquility.

REFERENCES
1. Hung Ho-Dac and Van-Len Vo, “An Approach to Enhance CI/CD Pipeline with Open-

Source Security Tools,” (2024-07-30) referred from: https://journal-
ems.com/index.php/emsj/article/view/1160#:~:text=Continuous%20Integration%20,appr
oach%20to%20improve%20the%20CI%2FCD

2. Joe Yankel, “Example Case: Using DevSecOps to Redefine Minimum Viable Product,” SEI
Blog, March 11, 2024 referred from: https://insights.sei.cmu.edu/blog/example-case-
using-devsecops-to-redefine-minimum-viable-
product/#:~:text=,best%20practices%2C%20a%20team%20works

3. Aqua Security, “Cloud Native Best Practices: Security Policies in CI/CD Pipelines,” Aqua
Blog, Jan. 22, 2020 referred from: https://www.aquasec.com/blog/cloud-native-security-
best-practices-devops-
security/#:~:text=With%20the%20continual%20leftward%20shifting,repositories%20for%20
their%20development%20needs

4. Aqua Security, “CI/CD Security: Threats, Tools, and Best Practices,” Aqua Cloud Native
Academy, Jan. 8, 2023 referred from : https://www.aquasec.com/cloud-native-
academy/supply-chain-security/ci-cd-security-threats-tools-and-best-
practices/#:~:text=Challenges%20in%20securing%20CI%2FCD%20pipelines

5. “Enterprise DevSecOps: Integrating security into CI/CD pipelines for cloud workloads,”
World Journal of Advanced Research and Reviews, 30 December 2021 referred from:

International Journal of Core Engineering & Management

Volume-7, Issue-11, 2024 ISSN No: 2348-9510

317

https://wjarr.com/content/enterprise-devsecops-integrating-security-cicd-pipelines-
regulated-industries

6. Nitesh Malviya, “Understanding the DevSecOps Pipeline,” InfoSec Institute, Sept. 26, 2022
referred from: https://www.infosecinstitute.com/resources/application-
security/understanding-the-devsecops-pipeline/#:~:text=

7. Amrish Thakkar, “How to build a CI/CD pipeline for container vulnerability scanning with
Trivy and AWS Security Hub,” AWS Security Blog, Jun. 29, 2020 referred from:
https://aws.amazon.com/blogs/security/how-to-build-ci-cd-pipeline-container-
vulnerability-scanning-trivy-and-aws-security-
hub/#:~:text=match%20at%20L157%20Trivy%20lets,back%20to%20a%20secure%20state

8. OWASP DevSecOps Guideline Project, OWASP DevSecOps Guideline v0.2, OWASP,
February 2023 referred from: https://owasp.org/www-project-devsecops-
guideline/latest/#:~:text=The%20Ideal%20goal%20is%20%E2%80%9Cdetect,%E2%80%9D

