

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

219

MITIGATING SUPPLY CHAIN ATTACKS IN WEB APPLICATIONS: A CASE STUDY

ON LOG4J AND SPRING4SHELL

Sandeep Phanireddy
USA

phanireddysandeep@gmail.com

Abstract

Recently supply chain attacks in web applications are becoming a typical cybersecurity threat in
which attackers take advantage of vulnerabilities of widely used software components. The at-
tacks focus on third party dependencies, package repos as well as software update mechanisms to
compromise entire systems. The Log4j (CVE-2021-44228) and Spring4Shell (CVE-2022-22965)
vulnerabilities exemplify the destructive scope vulnerabilities in the most popular frameworks
harbor, either leading to a complete compromise of service, data leakage, and the complete
execution involving the remote code execution (RCE). These are indicative of a necessity for robust
dependency management and pro activeness in security where a web application is concerned.
Various detection techniques and mitigation strategies are explored which meet the supply chain
threats in this paper. The main methodologies used are Software Bill of Material (SBOM) for
monitoring dependencies; proxy repositories to stop unapproved package downloads; and
dependency scanning tools such as, OWASP Dependency-Check, Snyk and GitHub Dependabot.
The paper also notes about the necessity of static and dynamic analysis (SAST, DAST) and regular
patch management to reduce exploitation risk. Integrating these strategies increases the ability of
organizations to harden their security posture to modern supply chain threats. By proposing an
exhaustive framework to identify and mitigate prevent Software Supply Chain attacks, this work
extends the thrust of literature by emphasizing on the fact that future should see continuous
monitoring and secure development practice along with AI based threat detection.

Keywords: Supply Chain Attacks, Dependency Management, Remote Code Execution (RCE),
Software Bill of Materials (SBOM), Vulnerability Mitigation

I. INTRODUCTION
1.1 Understanding Supply Chain Attacks in Web Applications
Today, most modern web applications are derived through a combination of proprietary code,
open-source libraries, as well as 3rd party components [1]. This brings much faster development
and innovation, but also fierce security risks. Supply chains attacks are one of the most critical
threats borne by organizations today, where the malicious actors try to seize control of the
software vulnerabilities as it goes through various phases of development and deployment
processes. Supply chain attacks are different from the regular cyberattacks through the
exploitation of weakness inside organization‘s internal systems by attacking 3rd party
components, which can make it tough to discover and eliminate the effects. In recent years

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

220

however, these attacks have become much more popular thanks to the boom of OSS [2]. This is
particularly true when an organization integrates open source libraries in their program without
performing thorough security evaluations, taking the assumption that these components are
secure based on the fact that they are massively popular [3]. However, this trust is abused by
attackers who inject malicious code into popular libraries, compromising package repositories or
utilizing outdated dependencies with known vulnerabilities.

There are various ways in which these attacks could occur, i.e. injecting malicious code into
popular open-source libraries, exploits in popular used frameworks, compromising package repos
like Maven, for Java; npm, for JavaScript; and PyPI, for Python. A single vulnerable dependency
can destabilize the entire software supply chain at once, spreading through thousands of
organizations [4]. While attackers can do typo squatting — where they upload malicious
packaging files with names close to legitimate ones or even take over abandoned or unmaintained
packaging files to distribute malware during an [?]. One example of this is the Solar Winds attack
in 2020, where compromised software update could be used to dig into government agencies and
major corporations. There have also been similar incidents as in 2018 where an attacker was able to
inject backdoors into a widely used JavaScript package and thus also influenced affected a large
number of projects that depend on it. These external components are very main to web
applications, and any security flaw in them can have incredible impacts, taking into account a
great many downstream applications and their [?]. In order for organizations to meet these
challenges, they are required to take active steps in curtailing reactive security paradigms through
continuous monitoring of dependencies, as well as strict access controls and verification of
integrity of external code before integrating it with software.

1.2 The Importance of Third-Party Dependencies
Nowadays, open-source software (OSS) is an essential part of modern development ecosystem [5].
Having less than 100 line of code and costing just 1 dollar per month it is economical, powerful
and easy to work with. Instead of reinventing everything, developers can use existing prebuilt
libraries to save time and accelerate development cycle and performance of the software [6]. This is
made possible via package managers such as Maven (Java), npm (JavaScript) and PyPI (Python)
for download, update and dependency management. While this reliance on third party code
brings with it risks, such as security risks from malicious actors exploiting vulnerabilities in third-
party code or injecting malicious code into software products via the maliciously modified
package repository. There are a number or reasons why third party dependencies can be risky,
namely insufficient visibility, inconsistently security practices and assumptions of trust [7].
Tracking which libraries and versions a given organization is using is difficult, which make it hard
to respond to security advisory as quickly as one would like. However, attackers can also exploit
known vulnerabilities if some developers don‘t update dependencies as it would lead to breaking
of the existing functionality if it is used to update the dependencies [8]. Take a look at how supply
chain risks have affected the different package ecosystems:

 Maven (Java): It is known that Java applications heavily depend on libraries, which are
managed by Maven Central Repository and have thousands of open-source components. There
are critical security breaches due to vulnerabilities in widely used Java libraries, such as
Apache Struts, Jack- son, and Log4j. An enterprise that depends on Java for its software is

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

221

vulnerable to cyberattacks if a commonly used Java library is compromised: Thousands of
enterprises from financial institutions to government agencies can be at risk.

 npm (JavaScript): Due to its extensive used in web applications, the npm ecosystem of
JavaScript is one of the largest and most targeted. They have used typo squatting, dependency
hijacking, and malicious updates to inject harmful code into the widely used npm packages.
For example, the event stream attack in which compromised package was used by an attacker
to steal cryptocurrency from applications which used the library.

 PyPI (Python): Attackers have also targeted Python‘s PyPI repository and distributed fake or
compromised libraries there. It is often malicious actors that upload fake libraries with names
close to their true name (e.g. requests instead of requests) that developers accidentally install
the malware. Also, Python package maintainers simply fall off the map and leave their projects
to the hands of attackers who are able to upload malicious updates.

Without security, when a third party is compromised the attacker can inject malware into the
application, giving them remote access or data exfiltration, stealing sensitive information, etc. and
gaining total application compromise. The supply chain attacks have grown 742% in the last 3
years, and as such organizations need to adopt the proactive security measures of Software Bill of
Materials (SBOM), so they can always have an inventory of dependencies; automated security
scanning tools such as OWASP Dependency Check and Sonatype Nexus, to limit exposure to any
malicious packages using proxy repositories and enforcing strict Dependency Management
policies preventing any unauthorized updates. With the rapid adoption of open-source
components, software supply chain security has become top priority for developers, security teams
and policymakers alike.

1.3 Notable Supply Chain Vulnerabilities: Log4j and Spring4Shell
Millions of applications worldwide were left vulnerable to cyber threats as supply chain attacks
became a devastating force to be reckoned with, with the likes of Log4j(Log4Shell) and
Spring4Shell. These incidents spotlight how a single weakness in a commonly utilized open
supply library might one-day lead to disastrous outcomes within multiple industries, together
with cloud providers, monetary establishments, wellbeing care programs and authorities‘
companies [9].

1.3.1 Log4j (CVE-2021-44228) - A Global Supply Chain Catastrophe
Log4j (CVE-2021–44228) was one of the largest and poorest supply chain attacks in history. In
December 2021, Apache Log4j discovered this zero-day flaw in the Apache Log4j logging library,
which resides within millions of Java based applications. Remote Code Execution (RCE) was
possible, and all that was required for an attacker to take full control of affected systems was to
send a specially crafted log message. That in turn meant that the flaw could be exploited even from
untrusted user inputs, such as text typed in chat messages or HTTP headers [10]. That impact was
real in the real world. As a result, major cloud providers such as Amazon AWS, Microsoft Azure
and Google Cloud all had to get rapid in their patching of services. Less than days after the
vulnerability was publicly announced, Cybercriminals and nation state of actors launched millions

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

222

of attacks against organizations such as Tesla, Apple and government agencies. It also was used to
load malware and steal sensitive data by ransomware gangs [11].

The lesson learned from this incident was very critical in the area of dependency management and
security [12]. Few organizations realized that they were using Log4j as they did not have a
Software Bill of Materials (SBOM) in place to track. The exposure was extended because some
companies did not have time to patch their dependencies, and as a result, stuck vulnerable [13].
The Log4j crisis ultimately underscored that it‘s time for dependency monitoring and security
policy for 3rd party components to be proactive.

1.3.2 Spring4Shell (CVE-2022-22965) - Another Major Java Exploit
Spring4Shell had a big impact, affecting thousands of enterprise Java applications that are used for
banking, e-commerce, and government systems. Automated exploits were developed by
cybercriminals quickly to scan the internet for vulnerable systems who then had to update their
Spring dependencies quickly to remain safe [14]. Spring4Shell affected thousands of enterprise
Java applications used in banking, e-commerce and government systems on a wide scale.
Cybercriminals very quickly developed automated exploits of this nature, and they began to
quickly scan the Internet, searching for vulnerable systems, which required organizations to
themselves update their Spring dependency packages very rapidly [15].

Key takeaways from the Spring4Shell incident noted the value of proactive patching to other
organizations that aren‘t able to detect and remediate Spring4Shell through dependency
monitoring. Besides, due to the large number of people affected when a framework uses a widely
known vulnerability, security teams had to be more sensitive to the risks at the framework level.
Moreover, secure software development practices (SSDLC) were required to mitigate the risks of
such vulnerabilities in the future [16].

1.3.3 Key Security Takeaways from Log4Shell and Spring4Shell
The whole series of incidents revealed the holes in dependency management and software supply
chain that prompted organizations to revise their security strategies [17]. Then, the CISA, NIST
and OWASP responded by issuing new guidelines on how to improve the security of the software
supply chain. The mandatory use of a Software Bill of Materials (SBOM) to track third party
dependencies as well to give better visibility in the components that are in the use for software
applications was one of the key recommendations. Foreseen was the implementation of automated
vulnerability scanning for detecting such flaws in open source libraries before they can be
exploited [18]. Other organizations were also advised to resort to proxy repositories such as Maven
Nexus or Artifactory to prevent external dependencies from getting included without restricting
their access [19]. Last, runtime protection schemes were suggested as a way to prevent exploits
from being executed [20].

Log4Shell and Spring4Shell served as a reminder that we rely on continuous monitoring, rapid
patching and secure software supply chain management. The risk theory of threat poses a threat of
spreading the cyber threat to all kinds of organizations and relying on the correct implementation
will no longer become possible due to the ever-evolving development of software.

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

223

1.4 Research Objective
This paper examines attacks in the real world, methods to detect them and best practices to reduce
the risk. Specifically, it examines:

 Attackers’ use of third-party dependencies in web applications.

 Where tools such as OWASP Dependency-Check, Sonatype Intelligence, and CISA SBOM

come into play in identifying vulnerabilities.

 How to secure the software supply chain using SBOM (Software Bill of Materials), proxy

repositories and secure package management via Maven, npm and PyPI platforms.
Familiarizing yourself with these threats and coming up with effective defensive techniques will
help organizations mitigate risks of supply chain attacks and strengthen software ecosystems.

II. SUPPLY CHAIN ATTACKS IN WEB APPLICATIONS
2.1 Understanding Supply Chain Attacks
Web applications get attacked by supply chain attacks when the attackers attack third party
components, libraries, or development tools with which the application is dependent [21]. Unlike
classical cyberattacks that exploit (vulnerabilities) in organization‘s own systems, such
cyberattacks rely on the interconnections among the modern software development [22]. Hackers
now have a way to inject malicious code into the widely used dependencies, compromising
thousands of applications at one time thus affecting businesses, governments and end users.

Figure 1: Supply chain attack

But now, with all these web applications using open source software and they rely heavily on
libraries from the outside, their attack surface has just seen a big expansion [23]. At the developer
level, we usually grab prebuilt components by using repository like Maven for Java, npm for
JavaScript and PyPI for Python to speed up the development much faster. These package
managers offer thousands of ready-to-use libraries, simplify coding, increase functionality, and
save time in developing. But if any of these dependencies are broken down, attackers are given a
stealth option to enter applications dependent upon them [24]. The reasons behind the numerous

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

224

supply chain attacks on web applications are:

2.1.1 Widespread Use of Open-Source Software
Instances of Fortune 500 companies using OSS are rampant and many organizations have
embraced the use of this open source to a great extent [25]. Developers get free customizable and
well tested solutions to accelerate the development when the projects are open source. We know
that most OSS projects are monitored by volunteers or small teams with limited resources, which
makes them prone to security gaps [26]. Widely used libraries could be left open to exploitation
until security updates and patches catch up. This overreliance on OSS is the silver lining for the
attacker: he can attack the libraries those organizations happen to be using that haven‘t kept their
security up or that are infrequently updated. They can get into lot of applications by injecting the
malicious code into the popular but placed poorly maintained repositories. Due to the fact that
many of these dependencies are gauged in by organizations without much caution, even a single
compromised package can have broad reach [27].

2.1.2 Complexity of Modern Software Development
With the growth in the modern web application, it has become a complex network of many
dependencies. Third party libraries on your application end up dependent on each other and on a
single application can have dozens if not hundreds of these libraries [28]. Because of this nested
dependency structure, an entire ecosystem of applications could be compromised if one package in
the supply chain has its integrity compromised. Dependency blindness does not mean that
developers are unaware of the number of dependencies their applications have present [29]. The
package that sits deep in a dependency chain is a good instance in which an attacker gains control
of production software, and organizations might not even know it. Given that this creates an
increasingly difficult problem of securing the software supply chain, increased visibility is needed.

2.1.3 Automated Package Management & Continuous Integration (CI/CD) Pipelines
Because of this, it is common for developers to use automated package managers like npm, PyPI,
and Maven to fetch the latest dependency versions, and this is done in order to streamline
development. They help with speeding this development and every application must access the
latest version of features and bug fix [30]. Yet, this automation brings a security risk to updating
itself if verification is not complete. As attackers exploit this automation, they inject malicious
updates into legitimate libraries in order to pass undetected. The malicious code spreads across
multiple projects in case of an unknowing developer that downloads and inserts a compromised
package [8]. In high profile attacks, this tactic has been used including typo squatting (creating
package names that are similar to existing popular locations) and dependency confusion
(publishing fake versions of internal company packages to public repositories).

2.1.4 Difficulty in Detecting Malicious Code
Supply chain attacks are unlike many forms of malware, which sometimes can be caught with
antivirus software, as they are done in such a stealthy and subtle manner that they result in
changes to existing code [31]. They could be as crude as adding a few lines of code that exfiltrate
sensitive data or that bring in a hidden backdoor. The reason is that the modifications are inside
legitimate libraries, and as a result, they often bypass traditional security scans and code reviews.

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

225

Also, malicious code can stay dormant for months or even years before it activates meaning there
is little of an indication to alert you [32]. The malicious payload can wait for a specific condition of
an event, for example a software update or an expiration date. Such delay further complicates
forensic investigations as it becomes difficult to locate the reason why an attack was not detected
early or solved, as this occurred much later than the initial compromise.

2.2 Real-World Supply Chain Attacks
Supply chain attacks have very much been around for some time, as demonstrated by a number of
high profile incidents, such as Log4Shell, Codecov and Solar Winds.

Figure 2: Timeline of Major Supply Chain Attacks

2.2.1 Log4Shell (Log4j Vulnerability - 2021)
The most important vulnerability of recent years, Log4Shell, was found in Apache Log4j, a popular
Java logging framework. Attackers could remotely execute their own arbitrary code by sending a
specially crafted request. It was an easy to exploit security threat that affected millions of
applications including enterprise software and cloud services [33]. As a result, industries relied
heavily on Log4j but with widespread use, major organizations such as Amazon, Microsoft, and
Google were left scrambling to patch it to prevent possible breach. This was an event that showed
just how big of a ripple effect a single open source vulnerability can have on the world software
ecosystem at large [8].

2.2.2 SolarWinds Attack (2020)
This is the SolarWind‘s attack that showed how even the most secure organizations can be
infiltrated through a supply chain compromise. Attackers inserted a backdoor (Sunburst malware)
into routine software update of a popular network monitoring software SolarWinds Orion, so they
could infiltrate the networks of the companies they targeted. After the update was installed, the
attack granted the attackers the ability to access unauthorized sensitive networks. Unknown to
customers over 18,000 of them had been deploying the undisclosed update [34]. It demonstrated
just how dangerous it is to trust third party software update packages without getting your hands
dirty [35]. It also emphasized the need for security verification of software dependencies at the

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

226

continuous monitoring level before they are deployed.

2.2.3 Codecov Attack (2021)
Codecov attack proved to be attacking CI/CD pipelines, undergoing a powerful and fundamental
element of modern software development. Attackers hacked Codecov‘s Bash uploader script — a
Bash tool that developers use for code coverage analysis. Affected projects had their sensitive
environment variables such as API keys and credentials stolen from them and secretly sent to an
attacker controlled server in the modified script [36]. The choice fell on this breach of the security
risks of the third party integrations in the CI/CD pipeline. That was an alarm for organizations, to
check very seriously to which extent was exposed through the use of external tools, how could
they manage the credentials to minimize exposure [37].

2.2.4 Need for Stronger Supply Chain Security
As the activity of supply chain attack (SCA) has become more and more frequent as well as more
sophisticated, protecting third party products has become a top security priority for teams. But,
many organizations are not completely aware what dependencies they are using, meaning we are
still vulnerable to future threats [38]. Companies should adopt the following security measures to
disseminate these risks.

 Software Bill of Materials (SBOM): The ability to have a detailed inventory of all of the pieces
of software within an application is used to be used to track the vulnerabilities within the
application, but more importantly it helps with faster response when incidents occur in
security.

 Automated Dependency Scanning: Snyk, Dependabot, and OWASP Dependency-Check
continuously scan for known vulnerabilities in third party packages, giving people the ability
to patch them before harm is done.

 Zero Trust Approach: The prudent attitude of an organization with respect to third party com-
ponents is ‗never trust, only verify‘. By doing this, malicious code can be prevented to enter the
software supply chain.

 Regular Code Audits and Penetration Testing: Frequent security assessments help detect
anomalies at the earliest and in this way help preventing attacks done by them. Static analysis,
code reviews and penetration tests should be expected in every software development cycle.

 Secure CI/CD Practices: Code signing in development pipelines, checking for artefact integrity
and stringent access controls prevent unauthenticated, untrusted software components from
being deployed.

2.3 Common Attack Vectors in Supply Chain Attacks
There are several forms of supply chain attacks and the techniques they use to compromise an
apps‘ ecosystem. Unwanted and exploitable vulnerabilities in third party dependencies,
development pipelines or even software distribution mechanisms are used by the cyber criminals
to gain access to the systems without clearance [39]. Then are some of the most common attack
vectors that are used in supply chain attacks.

2.3.1 Compromised Third-Party Libraries
Injection of malicious code in third party libraries is one of the most common ways of supply chain

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

227

attacks. Unfortunately for many users, attackers often gain this ability by hijacking a popular open
source package or handing out a fake copy of a much loved library [40]. Cybercriminals in open-
source package hijacking get access to maintainers‘ accounts with which they insert malicious code
into update. However, when one of the developers unknowingly updates his dependencies
including the compromised package, the package is automatically included in the applications that
he himself developed. However, malicious packages are uploaded under the name of familiar
packages in the JavaScript npm ecosystem to fool developers. Python‘s PyPI repository has seen
dependency poisoning, where attackers glue altered versions of ‗good‘ packages into hopes that
untaught developers compulsively install them. The event-stream attack in npm is notorious
example of this attack vector. Thousands of developers received the malicious code thanks to a
new maintainer of the library that was inserted, with the aim to steal cryptocurrency wallet
credentials [41].

2.3.2 Code Injection via Dependencies (Typo squatting and Dependency Confusion)
Secondly, attackers use package naming convention to distribute malicious dependencies by typo
squatting and dependency confusion. The term typo squatting is used to describe when malicious
packages are created with similar names to really popular libraries and hope that because it is
common for developers to make typographical errors when installing dependencies, it will be used
instead of the real package. For example, if a developer installs requests instead of requests, by
mistake, the code being installed will contain the harmful code. Dependency confusion attacks
exploit package managers‘ way of resolving dependencies [41]. An attacker can upload a public
package with the same name as an organization‘s internal library (e.g. company-internal-library)
stored in a private repo if it‘s an organization with an internal library (e.g. organization — has
internal library in private repo) in a registry of npm or PyPI. Because package managers tend to
put priority on public versions, developer may accidentally load the packages with the controller.
Security researcher Alex Birsman found an ingenious technique that he successfully used to inject
malicious dependencies into major tech companies like Apple, Microsoft and Tesla.

2.3.3 Backdoors in Open-Source Components
Open-source projects get some of the attackers to contribute seemingly legitimate code to open-
source projects, which later you can exploit [35]. These backdoors can have months or years pass
until they are activated. One notorious particular case involved UAParser.js attack where the
hackers hacked a very widely used JavaScript library which does browser fingerprinting. The
malware that got included into the package was meant to steal passwords and install
cryptocurrency miners on infected PCs. The attack was detected and no longer possible after it was
done because many applications and enterprises relied on UAParser.js.

2.3.4 Build System and CI/CD Pipeline Attacks
Build system and CI and CD pipeline attacks try to inject malicious code into the build or
deployment process of the software development lifecycle [42]. Nowadays, attackers use
vulnerabilities in CI/CD pipelines to control the software deployment, therefore it may be possible
to inject malware into pro- duction environments [43]. It is possible for them to inject malicious
scripts into, either build scripts or containerized software releases. Unauthorized access to
someone‘s developer account or their code repository allows the attackers to commit a backdoor

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

228

into the source code, which they will be able to ex- ploit later. One such attack that serves as a
prime example of all of this is the SolarWinds incident where attackers gained access into a trusted
software update mechanism and subsequently caused widespread infiltration of government
agencies and other major corporations.

2.4 Impact of Supply Chain Attacks
While supply chain attacks seem a hypothetical reality, the damage is real, and it can happen to
organizations across many other industries [44]. This can affect financial losses, data breaches to
complete service disruption. Businesses and governments are at risk of long-lasting damage from
threats that stem from attackers breaking into software dependencies, development pipelines.

Figure 3: Impact of Supply Chain Attacks

2.4.1 Data Breaches and Information Theft
Attacks through compromised dependencies can lead to exfiltration of the sensitive data,
including customer‘s personal details and payment records. Also, attackers may be able to enter
inside the internal systems by authenticating credentials and API keys [45]. Financial and
competitive disadvantages can also occur if intellectual property and proprietary code are stolen.
CODECOW 2021 is a good example of exactly this: attackers inserted malicious code into
CODECOW‘s Bash uploader script, and thus were able to obtain sensible environment variables
from many companies in one go. This attack proves that developers tools and CI/CD pipes use
must be safeguarded.

2.4.2 Remote Code Execution (RCE) and System Takeover
Attackers can infect their systems with malware, steal data or bring entire operations to their knees
simply because the third-party libraries it runs are vulnerable. This threat is shown by Log4j (or
Log4Shell) and Spring4Shell vulnerabilities, as simple HTTP requests allowed attackers to

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

229

remotely run commands on thousands of servers around the globe. The point here was that a
single open-source vulnerability exposed could affect millions of systems, and this required
proactive security measures in the software development process [46].

2.4.3 Financial and Reputational Damage
When affected, an organization often suffers significant financial losses in response to incident
response, the audit of security, and system restoration costs [47]. If you expose customer data there
are legal penalties that can result in hefty fines and can worsen your customer trust and adversely
affect reputation, even rendering future receipt of revenue impossible. The Kaseya ransomware
attack is a stark example of a cybercriminal taking advantage of Kaseya‘s remote management
software‘s vulnerabilities. Once they were in–this allowed them to drop ransomware on to 3,000s
of businesses around the world and ask for multimillions to unlock data.

2.4.4 Widespread Service Disruption
Disruption to critical applications and services due to compromised essential libraries or software
components can result in operational failures, downtime, and, in the case of the OPENTM
Librarian component, the potential for unpredictable behaviour and possibly failed transition to
Dreamtime. It is particularly harmful to the industries like healthcare, where a compromised
patient management system or hospital network can cause interruption in medical services, and
finance, where banking applications and payment systems can be compromised, resulting in
financial insecurity. The problem of cybercrime is just as much for government and defense sectors
as it is for the industry thanks to the fact that cybercriminals can pose a serious risk to the national
security due to targeting critical infrastructure [48]. A well understood example of such a
disruption is the NotPetya attack, stemming from an attack on supply chain through the Ukrainian
accounting software. Within a few years, it spread globally, causing billions of dollars‘ worth of
damages and severely affecting major companies such as Maersk, FedEx, Merck.

III. CASE STUDIES: LOG4J AND SPRING4SHELL
Both the Log4j and Spring4Shell cases have highlighted the reality of how supply chain
vulnerabilities can inflict devastation to a large number of organizations. These two vulnerabilities
exposed very critical security holes in many used Java frameworks that allowed attackers to run
remote code on affected machines [49]. These incidents were extremely serious, which put our
focus to strengthen the security of third party dependencies and implement prompt mitigation.

3.1 Log4j (CVE-2021-44228)
The discovery of this Log4Shell (CVE-2021-44228) vulnerability kicked off a massive cybersecurity
crisis centered around the widely used Java logging framework Log4j. This flaw existed in Log4j
versions 2.0 through 2.14.1 due to the handling of user input in Java Naming and Directory
Interface (JNDI) lookups supported by the framework. This feature can be exploited by attackers to
execute arbitrary code on a target system and is one of the rarest remote code execution (RCE)
vulnerabilities recently [50].

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

230

Figure 4: Log4j Exploitation

The Log4Shell exploit was rather simple to use. Any application which logs the user-controlled
data that attackers can inject a specially crafted string into it. Log4j, when parsing a string
containing a JNDI lookup command like $jndi:ldap://malicious-server.com/exploit would have
made a request to the malicious server. This granted control of the affected system to the attacker,
allowing it to be remotely executed and, in some cases, for the attacker to gain full control [51].
Log4Shell was a major concern because log4shell is a super easy thing to exploit in countless
applications in all areas of life because loging is a basics feature with lots of applications.

Log4Shell impacted major cloud providers, enterprises and government agencies by taking down
big companies. To prevent the impact of the vulnerability, cloud services like AWS, Microsoft
Azure, and Google Cloud were required to react immediately. Nation state actors and cyber
criminals were quick to turn the flaw into their own malicious tools such as data theft,
cryptocurrency mining and ransomware. According to Microsoft and VMware, APT groups began
using Log4Shell for espionage. Gangs of ransomware use the exploit to gain initial access to
corporate networks and integrated it into attack chains.

Upon sensing the danger, organizations responded with speed and have put in place various
security measures to avert the risk. Log4j 2.15.0, released by the Apache Software Foundation was
disabled by default for JNDI lookups. Following that, additional patches were released to patch
other weaknesses and make it more secure. Firewall rules, intrusion detection systems (IDS) and
web application firewalls (WAFs) were deployed all over the world for blocking attempts at
exploit. Many organizations created temporary workarounds by setting system properties to
disable JNDI lookups while they worked at solving the issue on a more permanent level. Yet all of
this has not prevented Log4Shell from remaining a threat because legacy applications and
embedded devices remain unpatched. It was after the Log4Shell incident that the need of software
supply chain security and proactive vulnerability management became even clearer. It was also a
demonstration that even revered and relied upon software components of all sizes can have

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

231

destructive security vulnerabilities inside them, and they need to be monitored and updated
constantly by organizations [52]. Tools to scan for and eliminate Log4shell have been developed by
security researchers and vendors since and the long term implications on cybersecurity practices
around this problem are still substantial.

3.2 Spring4Shell (CVE-2022-22965)
In March 2022, just a few months after the Log4Shell crisis, another significant Java vulnerability
emerged: Spring4Shell (CVE-2022-22965). This vulnerability affected the Spring Framework, a
widely used Java framework in enterprise applications and cloud environments [53]. Unlike
Log4Shell, which stemmed from improper input validation in a logging library, Spring4Shell was
triggered by insecure class binding mechanisms in Java, allowing attackers to achieve remote code
execution when specific conditions were met. Specifically, Spring4Shell took advantage of a
deserialization vulnerability in one of the data binding features in the Spring Core framework: it
allows objects to be dynamically created with user input as parameters. On the remote machine,
the attackers managed to have property values modified within the class loader scope to change
certain of the application objects in order to run remote code. In a typical type of attack scenario,
an HTTP request was sent that, however, changed the properties of the class loader. Attackers
could upload a malicious web shell and obtain persistent remote access to compromised server by
overwriting certain fields. However, most of the vulnerability existed in an application that is run
on Apache Tomcat with JDK-9 or later. Sharing similarities with Log4Shell, Spring4Shell differed
from the earlier vulnerability in some ways. Although Log4Shell was significantly easier to exploit,
requiring nothing more than a simple string injection, in order for Spring4Shell to be vulnerable it
Patches were released by the developers of the Spring Framework for versions 5.3.18 and 5.2.20,
which restricted access of the class loader and prevented unauthorized modifications. More such
security measures were taken by security teams which included disabling unsafe reflection,
updating containerized applications to remove vulnerable components, and deploying web
application firewalls for detection and blocking of the attacks. While Spring4Shell, contrary to
Log4Shell, wasn‘t as bad, it reaffirmed the ongoing security issue with Java ecosystems and the
necessity of continuous vulnerability management.

log4Shell and Spring4Shell remind us that the threat landscape is constantly evolving, with widely
used software components that introduce very serious security risks. Such incidents have
compelled regulatory bodies and cybersecurity frameworks to put ideal expeditious security
measurements, utilizing software bill of materials (SBOM) following, and better application
security testing, for the most part, to counteract a similar vulnerability from showing up in future.
Log4Shell and Spring4Shell remind us that the threat landscape is constantly evolving, with
widely used software components that introduce very serious security risks. Such incidents have
compelled regulatory bodies and cybersecurity frameworks to put ideal expeditious security
measurements, utilizing software bill of materials (SBOM) following, and better application
security testing, for the most part, to counteract a similar vulnerability from showing up in future.

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

232

Figure 5: Spring4Shell Exploitation

IV. METHODOLOGIES TO IDENTIFY ISSUES
Proactive approach using automated tools, rigorous security assessment, and good practice in
software development is needed for identifying and mitigating vulnerabilities in the software
supply chain. As applications become more complex due to using open-source components as well
as relying on third party dependencies, organizations must adopt comprehensive methodologies
to maintain integrity of their applications. These methodologies are further concerned about the
tracking of dependencies, scanning for vulnerabilities, and in detail code analysis to find and fix
security holes before such holes can be exploited by the attackers. Organizations can thus best
reduce their supply chain threat exposure and increase the security level of their software systems
by employing these techniques.

4.1 Software Bill of Materials (SBOM)
A Software Bill of materials (SBOM) is a detailed inventory of all the software components and
Third-party libraries used, use of dependency, etc, from an application. It gives visibility into the
software supply chain, such that organizations can know the source, the versions, and the
interrelationships of each component. As such, this transparency is key in assessing the security of
software applications since it gives an organization the ability to quickly find out if they are using
outdated or vulnerable components that attackers may exploit. Consequently, SBOMs are highly
useful for reducing supply chain attack risks as they allow organizations to monitor dependencies
and react quickly to newly detected vulnerabilities. By having an up-to-date SBOM in hand,
security teams can logically compare the contents of their software components with vulnerability
databases, such as the National Vulnerability Database (NVD) and act on any identified issue
immediately. They also could automate generation and analysis of SBOMs into the software
development lifecycle, which can continuously produce SBOMs for real time security assessments
[54].
Since SBOMs are a necessary element of software security, the Cybersecurity and Infrastructure

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

233

Security Agency (CISA) has put forth guidelines to enable standards for the creation of SBOMs
within specific industries. These guidelines propose machine readable SBOM formats, includ- ing
SPDX (Software Package Data Exchange) and CycloneDX, to conduct an automated vulnerability
detection and remediation process. In this focus, CISA has encouraged adoption of SBOM in
federal software procurement, and it enriches the national cybersecurity resilience. Organisations
can improve their ability to track and secure their software supply chain by implementing SBOMs
and reduce the risks of supply chain attacks which could lead to supply chain attacks which would
compromise critical systems and data

Figure 6: Software Bill of Materials (SBOM)

4.2 Dependency Scanning Tools
Dependency scanning tools are essential to identify vulnerabilities in those external dependencies
that most modern applications rely on as they are dominated by third party libraries and open-
source components. These tools are attuned to automatically analysing software dependencies and
check them against known vulnerability databases to help an organization detect and fix security
risks before they are exploited. Regular dependency scanning helps security teams to know any
threats that can be unleashed and patches it accordingly. OWASP Dependency-Check is a widely
used tool for Java based applications that scan dependencies being managed by JDK tools such as
Maven and Gradle [55]. while also cross references dependencies with the National Vulnerability
Database (NVD) to identify security flaws and supply intensive tell on probable threats. Likewise,
tools such as Sonatype Lifecycle and Nexus IQ provide a comprehensive solution for dependency
management for applications developed in JavaScript (NPM) and Python (PyPI). In addition to
detecting vulnerabilities, these provide remediation guidance as well, and development teams can
efficiently solve security problems without disrupting the development flow.

As containers move more into the mainstream, securing container dependencies has become a
must. These types of tools include Snyk, GitHub Dependabot, and Trivy that used to detect
vulnerabilities in containerized environments, scanning Docker images, Kubernetes deployments
and infrastructure as code configuration. These tools are very easily integrated into CI/CD
pipelines to make sure that we assess security at every stage of the software development lifecycle.
Through dependency scanning tools, organizations can detect vulnerabilities proactively in its

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

234

software applications before the supply chain compromise can occur with grave consequence.

Tool Name Supported
Languages

Features Integration with
CI/CD

OWASP
Dependency-Check

Java, Python, Maven
JavaScript, etc

 Identifies known
vulnerabilities (CVEs)

Jenkins,
Actions,

CLI

GitHub
GitLab,

Snyk Java, JavaScript,
Python, Go, .NET,

Rust, etc.

Real-time vulnerability
detection, Fix suggestions,

License compliance

GitHub, GitLab,
Bitbucket, Jenkins,

Azure

GitHub
abot

Depend- JavaScript, Python,
Ruby, Java, .NET, etc.

Automated dependency
u p d a t e s ,

CVE alerts

Built into GitHub
(Pull R e q u e s t s &

Alerts)

GitLab Dependency
Scanning

Java, JavaScript,
Python, Ruby, etc.

Vulnerability scanning,
Dependency

insights

Integrated into Git-
Lab CI/CD

Whitesource
(Mend)

Multi-language
support

Open-source
risk management,

Policy enforcement

Jenkins,
GitLab,
CircleCI

GitHub,
Azure,

Sonatype Nexus IQ Maven, Java,
JavaScript, Python, etc.

Advanced policy
enforcement, Secu-

rity analytics

Jenkins, GitHub,
GitLab, Bitbucket

4.3 Static and Dynamic Code Analysis (SAST, DAST)
Static and dynamic code analysis are two important methodologies that facilitate identification of
the security vulnerabilities in the organizations‘ software applications, before they are deployed in
the pro- duction. Both of these approaches work in conjunction with one another rolling out a
comprehensive security assessment that covers coding flaws as well as runtime vulnerabilities.
Incorporating Static Application Security Testing (SAST) and Dynamic Application Security
Testing (DAST) into the development pipeline allows companies to prevent and avoid the security
weaknesses that arise throughout the software development lifecycle [56]. SAST is analysing the
source code, bytecode or binaries without executing application. This way, security teams can find
out if that belongs to hardcoded credentials, SQL injection threats, too much validation, and weak
encryption even before the code is compiled or deployed. Real time feedback by SAST tools like
Checkmarx, Fortify, SonarQube directly into development environments, aids in integration of
SAST tools into development environments thus giving developers an opportunity to address
security issues as they write code. SAST is one of the key advantages because it allows
organizations to shift security left, allowing the detection of vulnerabilities early in the
development cycle before they are harder and more expensive to fix.

While DAST aims at evaluating security vulnerabilities in a running application by staging real
world attack scenarios, OSCAR performs the auditing in the source code without redeployment.
While SAST examines the code structure, DAST tests how an application behaves under different
scenarios by looking for vulnerabilities such as, for example, authentication flaws, session
management weakness, cross site scripting (XSS), and API misconfigurations. For web applications

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

235

and APIs, popular DAST tools like Burp Suite and OWASP ZAP are commonly used to test and
find exploitable weaknesses in the application that would not otherwise be apparent from static
code analysis alone [57]. However, SAST and DAST are most effective when used together. DAST
provides some insight into how an application behaves for real world scenarios while SAST is for
detecting vulnerabilities at the code level. The amalgamation of both methodologies would help
organizations in building a robust security framework to make their applications resistant against
the ever-evolving cyber threats.

V. DEFENSIVE TECHNIQUES AND MITIGATION
5.1 Using Proxy Repositories
A proxy repository is one of the most effective ways to protect software supply chains by
implementing an intermediary between external package repositories and developers. Proxy
repositories add controlled access to dependencies through which only vetted and approved
packages are downloaded and used for the distribution of the software within an organization‘s
software development environment. Tools such as Sonatype Nexus and JFrog Artifactory allow
enterprises to create local caches of third party libraries which reduces the chance their company is
affected by a supply chain attack and also speeds up build performance by reducing the amount of
external repository dependency [58].

Maven Central is a main source of dependencies for Java based applications and respectively using
a proxy repository prevents untrusted libraries entering the development pipeline. Likewise, the
NPM and PyPI proxying system is also crucial for the environments of JavaScript and Python
prevent to facilitate direct download of malicious or compromised packages. Most viruses are
injected into widely used libraries with malicious code and they aim to make it look like a
legitimate update sold by vendors of these libraries, i.e., open source repositories. Organizations
can make it entirely impossible for developers to accidentally bring in unverified dependencies by
forcing them to use internal package repositories. Furthermore, proxy repositories provide
auditing capabilities; security teams can see which versions of dependencies are being used and
take steps such as enforcing policies on the use of libraries.

5.2 Securely Downloading Packages
Safe downloading practices lead to the security and integrity of software‘s dependencies in the
first place. Package signatures are one such essential measure where cryptographic signatures are
verified to ensure that the downloaded libraries are authentic and intact. Most modern package
managers like Maven, NPM, and PyPI give signature verification built in. When this verification
process fails for a package, developers should configure their environments so any such packages
will be rejected, and thus tampered or malicious code will not end up in the software stack [59].

Organizations should go beyond signature verification and implement carefully designed allow
lists which define what dependencies can be used. By doing this, only thoroughly reviewed and
approved libraries can reach the application. Allow lists provide proactive control over what can
be installed, unlike try to reactively deny known malicious components. Dependency management
tools can be used by security teams to write policies, and enforce them, blocking any package that

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

236

has not explicitly been approved by you. Organizations can use signature verification plus allow
lists to create a layered defense against attackers who deploy supply chain attacks stemming from
untrusted or even compromised dependencies.

5.3 Implementing SBOM Best Practices
A Software Bill of Materials (SBOM) is a complete, machine readable list of dependencies for an
application (libraries, frameworks and other third-party components). Having SBOM is a must; it
allows you to track dependencies, identify vulnerabilities, as well as complete regulatory
compliance. Thus, it offers full transparency into components in a software system to allow the
program to determine and mitigate the potential security risks [60]. In order to produce an SBOM,
organizations have options to utilize standardized formats like CycloneDX or SPDX that can be
integrated natively in security monitoring technologies. SBOMs should be updated with the
dynamically occurring inclusion of new dependencies or changes in dependencies. By having
automated SBOM checks in CI/CD pipelines combined with real time alerts to report vulnerable
or out of date components, developers can quickly, which hopefully will happen prior to
deployment, be notified of a vulnerable or out of date component and remediate.

In line with CISA‘s call for adoption of SBOMs to make software supply chain security better, the
agency has strongly pushed for SBOM use. Today, many regulatory frameworks and industry
standards, including NIST‘s Secure Software Development Framework (SSDF), require the
organization to have this up-to-date SBOM as part of their cybersecurity best practices. Through
the use of SBOMs, organizations gain much more visibility into their application ‗ecosystems‘ to
better be able to proactively respond to emerging threats.

5.4 Regular Patch Management and Dependency Upgrades
Up to date dependencies is one of the most basic but neglected aspects of software security. Also,
attackers will often use known vulnerabilities on outdated libraries to break into a system. But to
avoid this risk, automated patch management solutions must be adopted by organizations that can
guarantee that after a security update is published their software patch and deploy automatically
[61]. Bot, one of the most widely used tool to manage dependency update, scans the projects
continuously to find out outdated packages and automates the process of upgrading version. By
using Renovate Bot or another tool in the CI/CD pipelines, software dependencies are kept up to
date without manual intervention. Automatic updates should be carefully tested to avoid
compatibility issues that may occur due to breaking changes.

Apart from automated updates, organizations should routinely perform security audits of their de-
pendencies via programs such as OWASP Dependency Check, Snyk, and GitHub Dependabot.
They broadcast alerts about vulnerable libraries to security teams who can use the severity and
exploitability of a found library to know what to patch first. In addition, enterprises should create
patch management policies, including which updates to do regularly, testing processes, and who
to escalate to for handling critical vulnerabilities.

It is shown that by being proactive with patch management, organizations will significantly reduce
their exposure to security threats, keeping their applications vulnerable to new attack techniques

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

237

until they are patched.

VI. CONCLUSION AND FUTURE DIRECTION
Such security risks are all too apparent with high profile vulnerabilities like Log4Shell (CVE-2021-
44228) and Spring4Shell (CVE-2022-22965), which see increasing default reliance on open-source
software and third-party dependencies. These incidents are proof that insecure dependency
management can have dire results: seemingly trivial faults in popular libraries can result in remote
code execution (RCE), data breaches, and widespread system compromise. In today‘s evolving
software supply chain, organizations must proactively take security at risk under control to protect
themselves.

The major takeaway from recent supply chain attacks is that simply automatic dependence
management is not enough. The tools such as Maven, NPM, PyPI and others package managers
significantly simplify the work process but also create entry point points for the attackers. Treat
actors are turning directly to software repositories as a new target, infecting either malicious
packages within popular repositories or using library exploits to attack widely adopted libraries.
While rapidly exploiting Log4Shell and Spring4Shell illustrates why software dependencies must
be made secure before attackers weaponise new vulnerabilities, the ability of attackers to find
common vulnerabilities and use them against well-known applications suggests that the free
sample rate could soon drop.

In attempts to combat these threats, organizations need to practice multi layered security
measures. To prevent unauthorized package downloads and to have oversight of third-party
dependencies, using proxy repositories can be helpful; they are Sonatype Nexus or JFrog Art
factory, for example. Package signature verification and strict allow list prevent introducing
components that do not have a verified signature to the software environment. Software Bill of
Materials (SBOM) adoption also has the role of full transparency of all dependencies in an
application used within it, which is essential for supply chain security. Automated SBOM checks
on the CI/CD pipelines enable Organizations detect and remediate vulnerabilities before the
software is deployed.

Another aspect of securing dependency management is being able to patch timely and to regularly
reudoate. Many attackers rely on out-of-date software components with known vulnerabilities as a
method of attack. Thus, patch management is a critical component to successful cybersecurity.
Renovate Bot, OWASP Dependency-Check, Snyk, and GitHub Dependabot automate the detection
of outdated libraries and security flaws to keep the organizations updated with the new threat in
the industry. It‘s however important to manage automated updates carefully to avoid breaking
dependencies and need for robust testing and version control makes. The current defensive
approaches are largely about patching known vulnerabilities, and restricting access to untrusted
dependencies, but there is the need of future research on dependency risk scoring and predictive
vulnerability detection using AI. The machine learning models could take advantage of software
repositories, developer activity and historical data of vulnerability from software to predict the
most likely to be used in the future at some point. With the help of AI powered risk assessment

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

238

adds in CI/CD pipelines, an organization could be proactive in finding out about high-risk
dependencies before they become catastrophic security threats. Furthermore, automated
behavioural analysis of third party libraries can help catch change of bad behaviour in real time
and prevent supply chain attacks like dependency confusion or typo squatting. Additional security
can also be offered by the AI driven anomaly detection of malicious packages that appear in
software package registries as legitimate updates.

REFERENCES
1. A. M. S. Laurent, understanding open source and free software licensing: guide to navigating

licens- ing issues in existing & new software.‖ O‘Reilly Media, Inc.‖, 2004.
2. Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, ―Have things changed now? an empirical

study of bug characteristics in modern open-source software,‖ in Proceedings of the 1st
workshop on Architectural and system support for improving software dependability, pp. 25–
33, 2006.

3. K. Fogel, Producing open source software: How to run a successful free software project.‖
O‘Reilly Media, Inc.‖, 2005.

4. T. Hellstr¨om, ―Critical infrastructure and systemic vulnerability: Towards a planning
framework,‖ Safety science, vol. 45, no. 3, pp. 415–430, 2007.

5. T. Kilamo, I. Hammouda, T. Mikkonen, and T. Aaltonen, ―From proprietary to open source—
growing an open-source ecosystem,‖ Journal of Systems and Software, vol. 85, no. 7, pp. 1467–
1478, 2012.

6. D. I. Board, ―Software is never done: Refactoring the acquisition code for competitive ad-
vantage,‖ Report of the Defense Innovation Board. Retrieved from https://media. defense.
gov/2019/Mar/26/2002105909/-1/-1/0/SWAP. REPORT MAIN. BODY, vol. 3, p. 19, 2019.

7. M. Neovius, Trustworthy context dependency in ubiquitous systems. PhD thesis, Turku Centre
for Computer Science (TUCS), 2012.

8. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, ―The attack of the clones: A study of
the impact of shared code on vulnerability patching,‖ in 2015 IEEE symposium on security and
privacy, pp. 692–708, IEEE, 2015.

9. W. D. Eggers and P. Macmillan, The solution revolution: How business, government, and
social enterprises are teaming up to solve society‘s toughest problems. Harvard Business Press,
2013.

10. M. Zalewski, The tangled Web: A guide to securing modern web applications. No Starch Press,
2011.

11. N. Selby and H. Vescent, The cyber-attack survival manual: tools for surviving everything
from identity theft to the digital apocalypse. Weldon Owen International, 2017.

12. R. Bejtlich, The practice of network security monitoring: understanding incident detection and
response. No Starch Press, 2013.

13. D. Waters, Supply chain risk management: vulnerability and resilience in logistics. Kogan Page
Publishers, 2011.

14. Wilson, Botnets, cybercrime, and cyberterrorism: Vulnerabilities and policy issues for congress,
vol. 29. Congressional Research Service Washington, DC, 2008.

15. M. Goodman, Future crimes: Everything is connected, everyone is vulnerable and what we can

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

239

do about it. Anchor, 2015.
16. M. A. Khair, ―Security-centric software development: Integrating secure coding practices into

the software development lifecycle,‖ Technology & Management Review, vol. 3, no. 1, pp. 12–
26, 2018.

17. L. Clark, Enterprise security: The manager‘s defense guide. Addison-Wesley Professional,
2003.

18. Payne, ―On the security of open source software,‖ Information systems journal, vol. 12, no. 1,
pp. 61–78, 2002.

19. B. T. C. Palos, ―Melhoria das pr´aticas de constru¸c˜ao de software: um caso de estudo,‖
Master‘s thesis, Universidade de Aveiro (Portugal), 2012.

20. J. Newsome, D. Brumley, D. Song, J. Chamcham, and X. Kovah, ―Vulnerability-specific
execution filtering for exploit prevention on commodity software.,‖ in NDSS, 2006.

21. G. Deepa and P. S. Thilagam, ―Securing web applications from injection and logic
vulnerabilities: Approaches and challenges,‖ Information and Software Technology, vol. 74,
pp. 160–180, 2016.

22. P. Eder-Neuhauser, T. Zseby, J. Fabini, and G. Vormayr, ―Cyber attack models for smart grid
environments,‖ Sustainable Energy, Grids and Networks, vol. 12, pp. 10–29, 2017.

23. C. DiBona, M. Stone, and D. Cooper, Open sources 2.0: The continuing evolution. ‖ O‘Reilly
Media, Inc.‖, 2005.

24. L. Cazorla, C. Alcaraz, and J. Lopez, ―Cyber stealth attacks in critical information
infrastructures,‖ IEEE Systems Journal, vol. 12, no. 2, pp. 1778–1792, 2016.

25. P. A. Gloor, Swarm creativity: Competitive advantage through collaborative innovation
networks. Oxford University Press, 2006.

26. M. Rashid, P. M. Clarke, and R. V. O‘Connor, ―A systematic examination of knowledge loss in
open-source software projects,‖ International Journal of Information Management, vol. 46, pp.
104–123, 2019.

27. R. J. Anderson, Security engineering: a guide to building dependable distributed systems. John
Wiley & Sons, 2010.

28. Brown and G. Wilson, The Architecture of Open Source Applications: Elegance, Evolution, and
a Few Fearless Hacks, vol. 1. Lulu. com, 2011.

29. O. Pieczul, S. Foley, and M. E. Zurko, ―Developer-centered security and the symmetry of
ignorance,‖ in Proceedings of the 2017 New Security Paradigms Workshop, pp. 46–56, 2017.

30. G. Hu, X. Yuan, Y. Tang, and J. Yang, ―Efficiently, effectively detecting mobile app bugs with
appdoctor,‖ in Proceedings of the Ninth European Conference on Computer Systems, pp. 1–15,
2014.

31. M. Jakobsson and Z. Ramzan, Crimeware: understanding new attacks and defenses. Addison-
Wesley Professional, 2008.

32. Skoudis and L. Zeltser, Malware: Fighting malicious code. Prentice Hall Professional, 2004.
33. Singh and K. Chatterjee, ―Cloud security issues and challenges: A survey,‖ Journal of Network

and Computer Applications, vol. 79, pp. 88–115, 2017.
34. S. Paquette, P. T. Jaeger, and S. C. Wilson, ―Identifying the security risks associated with gov-

ernmental use of cloud computing,‖ Government information quarterly, vol. 27, no. 3, pp. 245–
253, 2010.

35. Hoglund and G. McGraw, Exploiting software: How to break code. Pearson Education India,

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

240

2004.
36. B. Lakshmiraghavan, ―Security vulnerabilities,‖ in Pro ASP. NET Web API Security: Securing

ASP. NET Web API, pp. 345–373, Springer, 2013.
37. D. Cappelli, A. Moore, R. Trzeciak, and T. J. Shimeall, ―Common sense guide to prevention and

detection of insider threats,‖ 2009.
38. C. P. Pfleeger and S. L. Pfleeger, Analyzing computer security: A

threat/vulnerability/countermeasure approach. Prentice Hall Professional, 2012.
39. K. Huang, M. Siegel, and S. Madnick, ―Systematically understanding the cyber attack business:

A survey,‖ ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–36, 2018.
40. K. D. Mitnick and W. L. Simon, The art of intrusion: the real stories behind the exploits of

hackers, intruders and deceivers. John Wiley & Sons, 2009.
41. R. K. Vaidya, L. De Carli, D. Davidson, and V. Rastogi, ―Security issues in language-based

software ecosystems,‖ arXiv preprint arXiv:1903.02613, 2019.
42. C. Paule, ―Securing devops: detection of vulnerabilities in cd pipelines,‖ Master‘s thesis, 2018.
43. M. Koopman, ―A framework for detecting and preventing security vulnerabilities in

continuous integration/continuous delivery pipelines,‖ Master‘s thesis, University of Twente,
2019.

44. M. Knemeyer, W. Zinn, and C. Eroglu, ―Proactive planning for catastrophic events in supply
chains,‖ Journal of operations management, vol. 27, no. 2, pp. 141–153, 2009.

45. P. Siriwardena, ―Advanced api security,‖ Apress: New York, NY, USA, 2014.
46. J. A. Ozment, Vulnerability discovery & software security. PhD thesis, University of

Cambridge, 2007.
47. P. Purpura, Security and loss prevention: An introduction. Butterworth-Heinemann, 2007.
48. E. Haber and T. Zarsky, ―Cybersecurity for infrastructure: a critical analysis,‖ Fla. St. UL Rev.,

vol. 44, p. 515, 2016.
49. D. Malkhi and M. K. Reiter, ―Secure execution of java applets using a remote playground,‖

IEEE Transactions on Software Engineering, vol. 26, no. 12, pp. 1197–1209, 2000.
50. B. Seri, G. Vishnepolsky, and D. Zusman, ―Critical vulnerabilities to remotely compromise

vxworks, the most popular rtos,‖ White Paper, ARMIS, URGENT/11, 2019.
51. S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, ―Non-control-data attacks are realistic

threats.,‖ in USENIX security symposium, vol. 5, p. 146, 2005.
52. D. A. Fernandes, L. F. Soares, J. V. Gomes, M. M. Freire, and P. R. In´acio, ―Security issues in

cloud environments: a survey,‖ International journal of information security, vol. 13, pp. 113–
170, 2014.

53. C. Cimpanu, ―Spring4Shell: New zero-day vulnerability uncovered in Spring Framework,‖ The
Record by Recorded Future, March 31, 2022.

54. X. Ding, F. Zhao, L. Yan, and X. Shao, ―The method of building sbom based on enterprise big
data,‖ in 2019 3rd International Conference on Electronic Information Technology and
Computer Engineering (EITCE), pp. 1224–1228, IEEE, 2019.

55. Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and Y. Liu, ―An empirical study of
usages, updates and risks of third-party libraries in java projects,‖ in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 35–45, IEEE, 2020.

56. Y. Pan, ―Interactive application security testing,‖ in 2019 International Conference on Smart
Grid and Electrical Automation (ICSGEA), pp. 558–561, IEEE, 2019.

International Journal of Core Engineering & Management

Volume-7, Issue-06, 2023 ISSN No: 2348-9510

241

57. T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen, ―Continuous security testing: A case
study on integrating dynamic security testing tools in ci/cd pipelines,‖ in 2020 IEEE 24th
Interna- tional Enterprise Distributed Object Computing Conference (EDOC), pp. 145–154,
IEEE, 2020.

58. Y. Ma, ―Software supply chain development and application,‖ 2020.
59. W. Ozga, D. L. Quoc, and C. Fetzer, ―A practical approach for updating an integrity-enforced

operating system,‖ in Proceedings of the 21st International Middleware Conference, pp. 311–
325, 2020.

60. M. Buchheit, M. Hermeling, F. Hirsch, B. Martin, and S. Rix, ―Software trustworthiness best
practices,‖ Industrial Internet Consortium, 2020.

61. R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong, M. Ike, B. Saltaformaggio, and W. Lee,
―Automating patching of vulnerable open-source software versions in application binaries.,‖ in
NDSS, 2019.

