

International Journal Of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

106

NETWORK TOPOLOGY GENERATION USING THE SHORTEST PATH MODEL

Krishna Mohan Pitchikala
Graduate Student

University of Texas at Dallas
Texas, USA.

Abstract

Network topology refers to the way in which a network is configured, including the physical or
logical way the links and nodes are organized. Building an efficient network topology is essential
to build an optimized connection between various networks. These networks include both
communication networks and transportation system. An efficient network topology is the one
where any two nodes are connected by the most possible shortest paths. In this paper we focus on
generating a network with capacities assigned to the links using shortest path-based solution
method. We will calculate the total cost and density of the network using the Floyd-Warshall
algorithm. We will also generate the network for various capacities of links and will compare
how does it affect the cost and density.

Index Terms—Network topology generation, Floyd Warshall algorithm, Shortest path algorithm,
Cost calculation in networks

I. INTRODUCTION
The placement of nodes and links in a network is known as network topology. This placement is
crucial as it impacts how the data is transferred within that network. Network design is of great
importance in several areas including but not limited to the computer network,
telecommunications and logistics systems. The shortest path model has been used to create
optimized networks by minimizing the time taken, latency and resources especially in
transportations. This algorithm known as Floyd-Warshall which can find optimal paths between
all available nodes is a perfect solution for the generation of new topologies and optimal
distribution of new link strengths. Let us begin the walkthrough by speaking about Floyd-
Warshall Algorithm.
The Floyd-Warshall Algorithm helps in finding the shortest paths between all pairs of vertices in
the graph. In this graph each connection between the vertices (also known as edge) has a weight,
or cost, associated with it. This algorithm works for graphs that are either directed (where the
connections have a direction) or undirected (where the connections go both ways). But, it does not
work well for graphs that have "negative cycles" – Which represents the loops in the graphs where
the total weight of the edges is negative. In our case, since all edge weights are positive, we don't
need to worry about negative cycles and so we can apply the Floyd Warshall algorithm [1].
A weighted graph means every connection between two points in a graph has a specific value, like

International Journal Of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

107

a distance or cost. The Floyd-Warshall algorithm uses a method called dynamic programming. It
solves the problem step by step by breaking it into smaller pieces and then combining those
solutions towards the end. The idea of the algorithm is clear which is to find the shortest path from
one point (A) to another (C). This is done by either using the shortest path that is already found, or
by checking if going through a third point (B) makes the total journey shorter (from A to B, then B
to C) [1].

II. FLOYD WARSHALL ALGORITHM
The Floyd-Warshall algorithm evaluates all available connections between a given pair of nodes in
the graph and chooses the shortest one. It tries to cut down the cost required to travel from one
node to another by checking whether going through an additional node would reduce the total
distance travelled. This procedure considers every other node every time, making sure danger is
minimal and shortest paths persist [4].

A. Steps
1. Initialize distances:

a. You create a 2D array dist, where dist[u][v] represents the current shortest known

distance from node „u‟ to node „v‟.

b. Initially, the distance between any two nodes is set to infinity (∞), except for:

i. If there‟s an edge between nodes „u‟ and „v‟, set „dist[u][v]‟ to the weight of

that edge.

ii. The distance from any node to itself is set to 0 (dist[v][v] = 0), since there's no

distance required to stay at the same node.

2. Iterate over all nodes:

a. The algorithm examines every possible path through an intermediate node „p‟ to

check if there‟s a shorter path from node „u‟ to node „v‟ via node „p‟.

b. For each pair of nodes „u‟ and „v‟, if traveling through node „p‟ results in a shorter

path than the current known path, update dist[u][v] to the new shorter distance.

3. Update shortest paths:

a. This is the key step in the algorithm. This checks if the current known distance

dist[u][v] can be improved by going through node „p‟. If the new path through `k` is

shorter, it updates dist[u][v] with the shorter distance

International Journal Of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

108

B. Pseudo code
Pseudo code for Floyd Warshall Algorithm [11]

III. APPROACH

We will create a software that designs a network based on inputs of node connections, traffic
demands, and costs. The program will:

1. Take inputs on node connections and traffic between nodes.
2. Use the shortest path algorithm to design a network that minimizes the total cost.
3. Output the network design with link capacities and total cost.

Inputs to the program:

 Number of nodes (N)

 Traffic demand values(bij)

 Unit cost values (aij)

Output from the program:

 Network Topology

 Total Cost to design the network

 Graphs to denote the dependency between Cost and „K‟

 Graphs to denote the dependency between Density and „K‟

(„K‟ is the number that denotes the number of low-cost links in the network, and it changes
through the program)

Step-by-step-breakdown:

1. A 25-digit number is generated by appending our ID (student Id) to itself until the desired
length is obtained. This is represented by „d‟ and di corresponds to the ith digit in d

2. A traffic demand matrix “b” is generated using the formula bij = |di-dj|.

International Journal Of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

109

3. Generated a unit cost matrix “a” which is computed with varying values of k from 3 to 13.
4. On each of the generated matrix Floyd-Warshall algorithm is applied to find the shortest

paths in this weighted graph with 25 nodes.
5. Cost and density are calculated at each iteration of k
6. All these values are stored in a list for plotting purpose
7. Network is generated and is displayed for the specific values of K which are 3 ,8 and 13.
8. Graph is plotted for „K‟ versus Cost and „K‟ versus Density.

IV. FLOW CHART

Fig. 1. Flowchart of the program

International Journal Of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

110

V. RESULTS

The values of cost and density with respect to K can be shown below

Table I. K vs Cost vs Density

K Total Cost Density

3 12674 0.165

4 10872 0.2066

5 5978 0.2083

6 4895 0.25

7 4755 0.291

8 3900 0.33

9 4128 0.375

10 3589 0.4167

11 3548 0.4583

12 3067 0.5

13 3136 0.5416

Hence, we can conclude that Total cost is Inversely Proportional to the value K. This can be
clearly shown in graph below

Fig. 2. Plot of Total Cost vs K

International Journal Of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

111

Also, we can conclude that Density is directly Proportional to the value K. This is clearly
understood from the below plot

Fig. 3. Plot of Density vs K

Network Topologies for the K values 3, 8 and 13

Fig. 4. Network Topology for K=3

International Journal Of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

112

Fig. 5. Network Topology for K=8

Fig. 6. Network Topology for K=13

International Journal Of Core Engineering & Management

Volume-6, Issue-11, 2021 ISSN No: 2348-9510

113

VI. CONCLUSION
As we see the cost and density of the network depends greatly on the network parameter „K‟. This
is because the change in value corresponds to the change in the cost matrix „a‟. The variable aij
takes only 3 values 0, 250 and 1. Here 0 represents cost to self-node and all the other edges are of
cost 250. But depending upon the values of K we change „K‟ number of edges form each node to be
1 which indicates the lower cost edge compared to all the other edges.
So, when we increase the number of low-cost edges on the graph the density of the graph increases
obviously as we concentrate on finding the shortest path edges and increment in K results in
increase of number of such edges. Whereas the cost of the edges is cheaper compared to all the
other edges and hence it is obvious that Cost of the network decreases with increase in the value
„K‟.

REFERENCES

1. https://brilliant.org/wiki/floyd-warshall-algorithm/
2. Kohei Arai, “Routing Protocol based on Floyd-Warshall Algorithm Allowing Maximization

of Throughput” International Journal of Advanced Computer Science and
Applications(IJACSA), 11(6), 2020

3. https://doi.org/10.48550/arXiv.1807.10787
4. https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm/
5. https://networkx.org/documentation/latest/_downloads/networkx_reference.pdf
6. https://courses.cs.vt.edu/~cs3114/Fall10/Notes/T22.WeightedGraphs.pdf
7. Laurito, M. Bonaventura, M. E. Pozo Astigarraga and R. Castro, "TopoGen: A network

topology generation architecture with application to automating simulations of software
defined networks," 2017

8. https://www.tek-tools.com/network/best-network-topology-software
9. https://www.cs.toronto.edu/~lalla/373s16/notes/APSP.pdf
10. https://transportgeography.org/contents/methods/graph-theory-measures-indices/cost-

graph/
11. https://steemit.com/programming/@drifter1/programming-java-graph-all-pair-shortest-

path-algorithms-floyd-warshall-johnson

https://courses.cs.vt.edu/~cs3114/Fall10/Notes/T22.WeightedGraphs.pdf

