

International Journal of Core Engineering & Management

Volume-7, Issue-05, 2023 ISSN No: 2348-9510

187

PARAMETERIZED UNIT TESTING IN JAVA AND PYTHON

Nilesh Jagnik

Los Angeles, USA
nileshjagnik@gmail.com

Abstract

Unit tests can get repetitive and bloated over time. This can make unit tests complex and hard to
maintain which in turn may reduce the quality and coverage of such tests. A common reason for
this is that unit tests repeat a lot of setup and assertion logic. Parameterized testing aims to solve
this problem by reusing test logic over multiple test inputs. Parameterized unit testing is
supported by multiple unit testing frameworks in multiple programming languages. This paper
covers parameterized unit testing with JUnit5 in Java and Abseil in Python.

Keywords: unit testing practices, code reuse, unit testing frameworks

I. INTRODUCTION
Unit test is the most basic level of testing in software development. These tests are used for testing
the functionality of the smallest units of code. Unit testing is generally easy to do because the test
setup requires very few dependencies [1]. Due to this, it is generally considered good practice to
write exhaustive unit tests covering all possible edge case behaviour for the code under test.

The practice of doing thorough unit tests results in improved code health. But sometimes writing a
lot of unit tests can lead to duplication of code within the unit tests too. As a result, over time unit
test code becomes harder to read, maintain and extend.

In this paper we discuss a strategy that can drastically alleviate this issue by making unit tests
easier to read, maintain and extend. The strategy is to parameterize unit tests so that duplication of
code within unit tests can be reduced. Parameterized testing as a concept can be used in any
programming language. In this paper, we discuss ways to parameterize unit tests in Java and
Python.

II. PARAMERIZED UNIT TESTING
Parameterized testing is a testing paradigm that involves running the same test with difference
data inputs. In this setup, tests are written in a generic manner. These generic tests should be able
to test all or some functionality of the system in various test scenarios. The test scenarios are then
passed as input parameters to the test.

The scenario usually consists of input data and expected results from executing the system under
test. Each test scenario creates a new invocation of the unit test. Writing tests in this way reduces
the number of tests that need to be written.

International Journal of Core Engineering & Management

Volume-7, Issue-05, 2023 ISSN No: 2348-9510

188

III. WHY PARAMETERIZE UNIT TESTS
Parameterized testing allows running the same test multiple times with different inputs and
expected outputs [2]. Naturally this has its uses.
1. Code Reuse
As the complexity of a code module increases, its unit tests need to be also be updated to test all
corner and normal cases. In traditional unit testing paradigm, new test cases are created. These
cases may have a lot of common functionality with previously existing tests, like setting up the test
code, invoking the system under test and verifying that the correct output is produced. This means
a significant amount code is duplicated every time a new unit test is added. Creating
parameterized tests involves creating a single test, and providing a set of input and output pairs to
the test framework. The framework then creates multiple separate instances of the test, one
corresponding to each input and output pair. This reuse of code leads to fewer lines of test code
which also makes it easy to maintain.

2. Test Coverage
Parameterized tests are easy to extend. Since the core test logic is already written, adding a new
test case is simply a matter of appending an input and output pair to the parameter list. This
reduces friction of adding new tests and helps improve test coverage.

3. Reliability
A parameterized test is, in practice, a combination of what would otherwise be multiple tests. This
means its test conditions are typically a superset of all of them. In practice, this ensures every test
case is thoroughly tested using an established test of test conditions. These tests end up catching
bugs in an easier manner as compared to non-parameterized tests.

IV. STRUCTURE OF A UNIT TEST
The ideal coding pattern for unit tests organizes code into three blocks. Each block contains code
focused on one thing. This enables code to be better organized and easier to read and maintain [3].
1. Arrange
Code in this block is responsible for setting up the test environment. The code here should
simulate a real-world environment as closely as possible. This includes creating all dependencies
that the test object needs. And creating the test object itself. All mocks, fakes and spy objects
should be created in this block. Parameter inputs to the test object and its member functions
should also be created in this block.

2. Act
The test object/method is executed in this block using the dependencies and inputs created in the
Arrange block. This block is usually short.

3. Assert
This part of the unit test is responsible for performing checks on the output or side effects
produced by the Act block. The Assert block is responsible for determining whether a test was
successful or not.

International Journal of Core Engineering & Management

Volume-7, Issue-05, 2023 ISSN No: 2348-9510

189

V. PARAMETERIZED TESTING IN JAVA

1. JUnit Test Framework
JUnit is an open-source framework for Java that provides easy and automated ways for developers
to write unit tests to ensure that their code works as expected and detect presence of errors in code
[4]. JUnit is one of the most popular frameworks for testing Java code. JUnit5 is the most recent
generation of JUnit and focusses on Java 8 and above. In addition to unit tests, JUnit can also be
used for functional and integration tests.

2. Writing Unit Tests
Writing a unit test in JUnit is quite straight forward [5]. The normal practice is to create one test
class corresponding to every class that should be tested. Method of the test class are annotated
with the @Test annotation which tells the framework to execute these methods for unit testing. The
framework runs all the @Test annotated methods and reports success or failure based on their
results.

Fig. 1. A simple unit test using JUnit5

3. Writing Parameterized Unit Tests
Writing parameterized tests is not much more complicated either [6]. Similar to basic unit tests, a
test method should be annotated. The annotation changes to @ParameterizedTest instead of @Test
to let the framework know that this test expect parameters. Parameters are then passed to this test
using a source annotation. The source annotation specifies the source from where the parameters
should be read. There are several ways to provide the source of arguments. These can be values
specified directly, csv files or a method that generates parameters. Fig. 2 showcases the use of the
method source using the @MethodSource annotation.

Note that a parameterized test can be annotated with multiple source annotations allowing it to
read arguments from multiple sources

Fig. 2. A parameterized unit test using JUnit5

International Journal of Core Engineering & Management

Volume-7, Issue-05, 2023 ISSN No: 2348-9510

190

VI. PARAMETERIZED TESTING IN PYTHON
1. Abseil Testing Modules
Parameterized testing is supported by the Abseil Python Common Libraries’ testing modules [7].
The support for parameterized testing is very similar in essence to the JUnit in Java. The library
allows easy unit test development.

2. Writing Parameterized Unit Tests
Unit tests in Abseil Test require that the test class be derived from the parameterized. Testcase
class [8]. We can then use the @parameterized. parameters decorator which allows specifying a
method as a parameterized unit test along with providing the parameters expected by the test.
Similar to JUnit5, the test method should accept parameters as input and the decorator specifies
where the source of parameters.

Fig. 3. A parameterized unit test using Abseil Testing Modules

3. Parameterizing a Test Class
In addition to parameterizing a test method, we can parameterize the entire test class using Abseil
as well. This allows defining some common test cases which should be used as an input to all unit
test methods defined inside the test class.

Fig. 4. Parameterizing a test class using Abseil Testing Modules

International Journal of Core Engineering & Management

Volume-7, Issue-05, 2023 ISSN No: 2348-9510

191

4. Specifying Parameters
There are several ways to specify parameters inputs in Abseil tests. Parameters are normally
specified as a tuple, but they can also be created dynamically from a single non tuple iterable.
Developers can also use a list/tuple as a single argument and then parse it inside the unit test
method.

The Abseil Testing framework also allows running the test method over a cartesian product of
parameters. This allows running the test with an auto-generated combination of inputs.

VII. PARAMETERIZED TESTS LIMITATIONS
1. Test Becomes Too Complex
Parameterized testing is best suited to cases where the unit test logic can be kept simple.
Parameterizing test cases should not come at the cost of violating other best practices. In particular,
control structures and conditional statements should be avoided in unit tests [9]. Parameterizing
tests should be limited to cases where such anti-patterns are not introduced. Having an excessive
number of parameters in a test is sign that a test might be too complicated [10].

2. Naming
Naming test cases appropriately is important for readability of test code. Overuse of
parameterized testing can lead to unclear test naming. Test names being too generic is also a way
to detect overuse of parameterized testing.

VIII. CONCLUSION
Parameterized unit testing can have benefits when used correctly.
1. It can improve test coverage while reducing the complexity of unit tests at the same time.
2. Many test frameworks have support for parameterized testing making it an accessible tool to

improve quality of tests.

REFERENCES
1. Abhinav, “Intro to Unit Tests (Jan 2022),” https://medium.com/interleap/intro-to-unit-tests-

f2b7750c2d3c
2. Carlos Schults, “A Practical Guide to JUnit Parameterized Tests (Jan 2023),”

https://www.waldo.com/blog/parameterized-test-junit
3. Andrew Knight, “Arrange-Act-Assert: A Pattern for Writing Good Tests (Jul 2020),”

https://automationpanda.com/2020/07/07/arrange-act-assert-a-pattern-for-writing-good-
tests

4. Stefan Bechtold, Sam Brannen, Johannes Link, Matthias Merdes, Marc Philipp, Juliette de
Rancourt, Christian Stein, “JUnit 5 User Guide (Sep 2022),”
https://junit.org/junit5/docs/current/user-guide

5. Shinji Kanai, “JUnit: A Complete Guide (May 2022),” https://www.headspin.io/blog/junit-a-
complete-guide

6. Carlos Schults, “Writing A Parameterized Test In JUnit With Examples (Mar 2023),”

International Journal of Core Engineering & Management

Volume-7, Issue-05, 2023 ISSN No: 2348-9510

192

https://coderpad.io/blog/development/writing-a-parameterized-test-in-junit-with-examples
7. “Abseil Python Devguide: Testing (May 2022)”,

https://abseil.io/docs/python/guides/testing
8. “absl.testing.parameterized module (May 2022),” https://byoshimi2-abseil-

py.readthedocs.io/en/latest/absl.testing.parameterized.html
9. Anthony Sciamanna, “Unit Test Refactoring and Avoiding Complexity (Mar 2016),”

https://anthonysciamanna.com/2016/03/22/unit-test-refactoring-avoiding-complexity.html
10. Sergio Sastre, “Better unit tests with Parameterized testing (June 2021),”

https://medium.com/geekculture/multiplying-the-quality-of-your-unit-tests-part-1-
parameterized-tests-539428367222

