

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

162

PRACTICAL GUIDE TO BUILDING RETRIEVAL-AUGMENTED GENERATION

(RAG)

Suhas Hanumanthaiah
Independent Research

Abstract

Retrieval-Augmented Generation (RAG) is emerging as a transformative approach in the field
of artificial intelligence, offering a powerful solution to the limitations of standalone large
language models (LLMs), particularly with regard to hallucinations, knowledge staleness, and
factual inaccuracies. This paper presents a comprehensive and practical guide to designing and
implementing RAG systems, integrating retrieval mechanisms with generative models to
produce contextually accurate and up-to-date responses. The guide details the core architecture
of RAG, including retrieval system design, chunking strategies, embedding generation, and
vector database setup. Through methodical exploration of various retrieval techniques—such
as hybrid, semantic, and U-Retrieval—and chunking methods like Recursive, BERT, and
Token-based, the study illustrates how performance varies across precision, recall, and
faithfulness dimensions. The integration of open-source tools such as LangChain, ChromaDB,
and models like Llama3 and Mistral further highlights implementation pathways for both
researchers and industry practitioners. Use cases span domains including e-commerce,
education, and healthcare, with particular emphasis on hallucination mitigation and real-
world deployment considerations. The paper also discusses advanced innovations such as
graph-based and multimodal RAG, hardware optimization, and evaluation metrics.
Ultimately, this work serves as a detailed blueprint for developing scalable, accurate, and
efficient RAG systems, enabling enhanced applications in knowledge-intensive and dynamic
environments.

Keywords: Retrieval-Augmented Generation (RAG), Large Language Models (LLMs), Semantic
Search, Vector Embeddings, Prompt Engineering, Hybrid Retrieval, Chunking Strategies,
Hallucination Mitigation

I. INTRODUCTION

Retrieval-Augmented Generation (RAG) represents a groundbreaking approach in artificial
intelligence that enhances language models by combining them with external knowledge bases
[1], addressing fundamental limitations of standalone large language models (LLMs). RAG has
emerged as an effective approach to reduce hallucination in LLMs by leveraging up-to-date and
domain-specific knowledge beyond training data [2], making it an essential technique for
building reliable and accurate AI systems.

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

163

RAG combines retrieval mechanisms with generative language models to enhance the accuracy
of outputs, addressing key limitations of LLMs [3]. The core problem that RAG solves is that
models rely on fixed training datasets, which can lead to outdated or incomplete information
[1]. By incorporating external knowledge sources, RAG systems can provide more accurate,
contextual, and up-to-date responses while maintaining the generative capabilities of modern
language models.

II. UNDERSTANDING RAG ARCHITECTURE
2.1. Core Components
The RAG architecture consists of two fundamental components that work in tandem. The dual
architecture that combines information retrieval and generation processes is analyzed,
highlighting its impact on the training of natural language models [4]. The system operates
through a systematic process where when given a query, RAG systems first search a knowledge
base for relevant information. [1] The system then incorporates this retrieved information into
the model's prompt. The model uses the provided context to generate a response to the query.

The RAG architecture combines generative capabilities of Large Language Models (LLMs) with
the precision of information retrieval [5]. This integration enables the potential to redefine how
we interact with and augment both structured and unstructured knowledge in generative
models to enhance transparency, accuracy, and contextuality of responses [5].

2.2. Retrieval System Design
The retrieval component serves as the foundation of any RAG system. Hybrid retrieval
strategies combining dense vector search with traditional keyword-based methods can address
the limitations of standalone LLMs, particularly regarding knowledge cutoff, hallucinations,
and access to domain-specific information. The retrieval system must efficiently identify and
extract relevant information from large knowledge bases.

A novel text embedding scheme that combines a dense contextual embedding with a sparse
statistical embedding for document retrieval [7] has shown significant improvements in
retrieval accuracy. This hybrid approach leverages the semantic understanding capabilities of
dense embeddings while maintaining the precision of traditional keyword-based methods.

III. STEP-BY-STEP IMPLEMENTATION GUIDE
3.1. Phase 1: Data Preparation and Knowledge Base Creation
The first critical step in building a RAG system involves preparing your knowledge base. The
paper details the end-to-end pipeline, from data collection, preprocessing, to retrieval indexing
and response generation, highlighting technical challenges and practical solutions [5]. This
phase requires careful consideration of data quality, format standardization, and preprocessing
techniques.

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

164

Document chunking represents a crucial preprocessing step that significantly impacts system
performance. Efficient search and chunking methods are critical for optimizing the quality of
answers provided by these systems. [8][8] Current retrieval methods, like keyword and
similarity-based searches, often fall short due to limitations in chunk quality, which directly
impacts the accuracy of the RAG system.

Different chunking methods, such as Recursive Chunking, which divides text into hierarchical
sections that are further subdivided until the desired granularity is reached. [8] BERT Chunking
utilizes the BERT model to segment text, taking semantic meaning into account to ensure
coherent chunks. Token Chunking segments text based on individual tokens, offering fine-
grained control over segmentation.

Method Context

Precision
Context
Recall

Answer
Relevancy

Faithfulness

Recursive Chunking 85% 78% 82% 88%

BERT Chunking 92% 85% 89% 94%

Token Chunking 76% 82% 79% 81%

Table 1: Chucking Methods Performance Comparison [8]

3.2. Phase 2: Vector Database Setup and Indexing
The implementation of vector databases forms the backbone of modern RAG systems. By
leveraging vector embeddings for semantic search alongside traditional retrieval techniques, the
proposed system demonstrates significant improvements in accuracy, relevance, and factual
correctness while maintaining reasonable query response time. The choice of vector database
technology directly impacts both retrieval quality and system performance.

The methodology involved creating a RAG pipeline using tools like LangChain, vector
databases like ChromaDB, and open-source LLMs like Llama3 (a 70-billion parameter-based
model) [9]. Popular vector database options include ChromaDB for development environments,
Pinecone for cloud-based solutions, and Weaviate for enterprise deployments.

Documents were divided into text chunks and indexed in a database using both vector and
keyword indexing. [8] This allowed for searches by vectors for similar records and keyword
searches for exact matches. These records were then incorporated into prompts as context to
improve LLM responses.

3.3. Phase 3: Embedding Generation and Model Selection
The selection and implementation of embedding models significantly influence retrieval
quality. The AI model used for generating embeddings, such as OpenAI's text-embedding-ada-

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

165

002, plays a crucial role in this process by creating high-dimensional representations that
capture deep semantic meanings [8]. The embedding model must effectively capture semantic
relationships within your domain-specific content.

Different embedding approaches serve various use cases. For general-purpose applications, pre-
trained models like OpenAI's text-embedding-ada-002 provide excellent performance. For
specialized domains, fine-tuned embeddings or domain-specific models may yield better
results. integrates BioMed-RoBERTa-base model embedding generation (Gururangan 2020)
Mistral-7B question answering (Anthropic, 2023), enabling effective understanding response
complex clinical queries [10] demonstrates the effectiveness of domain-specific embeddings in
specialized applications.

3.4. Phase 4: Retrieval Strategy Implementation
The retrieval strategy determines how relevant information is identified and ranked for
generation. different search methodologies—Hybrid Search and Semantic Search—within a
Retrieval-Augmented Generation (RAG) framework. [8][8] Hybrid Search, which integrates
traditional keyword search with semantic search in order to provide more accurate and
contextually relevant results. In comparison, Semantic Search utilizes deep learning models to
comprehend the context and meaning of search queries and documents, thereby providing
more precise information retrieval.

Advanced retrieval techniques can significantly improve system performance. U-Retrieval
which combines Top-down Precise Retrieval with Bottom-up Response Refinement to balance
global context awareness with precise indexing [11] represents an innovative approach to
balancing comprehensive context with precise information retrieval.

3.5. Phase 5: Generation Component Integration
The generation component transforms retrieved information into coherent, contextually
appropriate responses. RAG offers the ability to create richer and contextually meaningful
answers to user queries by integrating LLMs with information retrieval processes. [12] This
architecture allows the language model to instantly access external information sources; thus, it
generates more accurate and contextual responses armed with existing information.

The integration process involves careful prompt engineering to ensure retrieved information is
effectively utilized. The prompt must provide clear instructions for incorporating retrieved
context while maintaining natural language flow. advanced Prompt Engineering Techniques in
E-Learning environments [8] demonstrates the importance of sophisticated prompting
strategies for optimal results.

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

166

Fig 1: RAG Architecture Flow Diagram

IV. TOOLS AND TECHNOLOGIES
4.1. Development Frameworks
Several frameworks facilitate RAG development, each offering unique advantages. FlashRAG,
an efficient and modular open-source toolkit designed to assist researchers in reproducing and
comparing existing RAG methods and developing their own algorithms within a unified
framework [13] provides comprehensive tools for RAG development and evaluation.

Feature Ease of
Use
(1-5

Scale)

Customization
(1-5 Scale)

Performance
(1-5 Scale)

Community
Support
(1-5 Scale)

Documentation
(1-5 Scale)

LangChain 4 4 3 5 5

LlamaIndex 5 3 4 4 4

Custom Build 2 5 5 2 1

FlashRAG 4 3 5 3 4

Table 2: Technology Stack Comparison [9]

LangChain emerges as a popular choice for RAG orchestration, offering extensive integration
capabilities and pre-built components. creating a RAG pipeline using tools like LangChain,
vector databases like ChromaDB, and open-source LLMs like Llama3 [9] demonstrates a
practical implementation approach using these tools.

For users requiring GUI-based solutions, a GUI-based RAG framework using RapidMiner, to
construct RAG systems without programming proficiency. [2] The methodology includes

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

167

storing and retrieving embeddings with the Qdrant vector database and generating question-
and-answer pairs via the OpenAI API. Practical demonstrations confirm the system's
effectiveness in real-world scenarios.

4.2. Model Selection and Deployment
The choice of language model significantly impacts system performance and deployment
considerations. A dedicated web-based application, PaSSER, was developed, integrating RAG
with Mistral:7b, Llama2:7b, and Orca2:7b models. [14][14][14] One test assessed the
performance of LLMs across different hardware configurations, while the other determined
which model delivered the most accurate and contextually relevant responses within RAG.
Orca2:7b on Mac M1 was the fastest, and Mistral:7b had superior performance on the 446
question-answer dataset.

Insights to researchers and practitioners developing similar systems using two distinct
approaches: OpenAI's Assistant API with GPT Series and Llama's open-source models [5]
provides guidance for selecting between commercial and open-source solutions based on
specific requirements.

V. BEST PRACTICES AND OPTIMIZATION
5.1. Performance Optimization Strategies
Optimizing RAG systems requires attention to multiple performance dimensions. Retrieval-
augmented generation (RAG) techniques have proven to be effective in integrating up-to-date
information, mitigating hallucinations, and enhancing response quality, particularly in
specialized domains. [15][15] Through extensive experiments, we suggest several strategies for
deploying RAG that balance both performance and efficiency.

Many RAG approaches have been proposed to enhance large language models through query-
dependent retrievals, these approaches still suffer from their complex implementation and
prolonged response times. [15] Typically, a RAG workflow involves multiple processing steps,
each of which can be executed in various ways. Understanding these trade-offs is essential for
optimal system design.

5.2. Quality Assurance and Evaluation
Comprehensive evaluation frameworks ensure RAG system reliability and effectiveness.
utilizing the RAGas testing framework, focusing on performance parameters including Answer
Correctness, Context Recall, Context Precision, Faithfulness, and Answer Relevancy. [8][8] Our
results, evaluated using the RAGas testing framework, highlight the strengths and weaknesses
of each search method and chunking technique. This study provides valuable insights into
optimizing RAG Systems.

Passer employs a set of evaluation metrics, including METEOR, ROUGE, BLEU, perplexity,

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

168

cosine similarity, Pearson correlation, and F1 score, to assess LLMs performance [14],
demonstrating the importance of multi-dimensional evaluation approaches.

5.3. Hallucination Mitigation
One of RAG's primary advantages lies in its ability to reduce hallucinations in generated
content. A common and fundamental limitation of Generative AI (GenAI) is its propensity to
hallucinate. [16][16] Thanks to our implementation of RAG, our proposed system significantly
reduces hallucinations in the output and improves the generalization of our LLM in out-of-
domain settings.

Key findings revealed that standard LLMs (without RAG) produced confidently incorrect,
hallucinated responses against queries related to Chandrayaan-3, while LLMs with RAG
consistently provided accurate, informative, and contextualized answers when supplied with a
set of relevant documents before generating the response [9], demonstrating RAG's
effectiveness in improving factual accuracy.

VI. REAL-WORLD APPLICATIONS
6.1. Enterprise and Commercial Applications
RAG systems demonstrate significant value across various enterprise applications. an advanced
chatbot for e-commerce platforms using Retrieval-Augmented Generation (RAG), a technology
that significantly enhances conversational AI by combining retrieval and generative techniques.
[17][17] The RAG-based chatbot addresses this by retrieving relevant information from sources
like product catalogs, FAQs, and customer reviews and generating responses tailored to specific
queries. This approach ensures accurate, contextually relevant answers that improve customer
satisfaction, streamline service processes, and reduce errors. By leveraging the RAG framework,
this solution provides robust, scalable customer support.

Enterprise deployment requires careful consideration of security and governance. Salesforce
Einstein Trust Layer proposes a solution to these challenges by not only setting up a trusted
layer for deploying Retrieval-Augmented Generation (RAG) models but also ensures that the
data privacy standards are met while delivering the AI generated responses. [18] This paper
discusses how the Einstein Trust Layer facilitates the safe practical application of RAG in
enterprise systems.

6.2. Healthcare and Medical Applications
The healthcare sector presents unique opportunities for RAG implementation. a novel graph-
based Retrieval-Augmented Generation (RAG) framework specifically designed for the medical
domain, called MedGraphRAG, aimed at enhancing Large Language Model (LLM) capabilities
for generating evidence-based medical responses, thereby improving safety and reliability
when handling private medical data [11].

Both RECTIFIER and study staff answers closely aligned with the expert clinician answers

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

169

across criteria with accuracy ranging between 97.9% and 100% (MCC 0.837 and 1) for
RECTIFIER and 91.7% and 100% (MCC 0.644 and 1) for study staff. [19][19] RECTIFIER
performed better than study staff to determine the inclusion criteria of "symptomatic heart
failure" with an accuracy of 97.9% vs 91.7%. GPT-4 based solutions have the potential to
improve efficiency and reduce costs in clinical trial screening.

6.3. Educational Applications
RAG systems show significant promise in educational contexts. Retrieval-Augmented
Generation (RAG) overcomes the main barrier for the adoption of LLM-based chatbots in
education: hallucinations. The uncomplicated architecture of RAG chatbots makes it relatively
easy to implement chatbots that serve specific purposes and thus are capable of addressing
various needs in the educational domain.

Libraries can develop a low-cost conversational search system using open-source software tools
and Large Language Models (LLMs) through a Retrieval-Augmented Generation (RAG)
framework. [9][9] The study concluded that open-source RAG-based systems offer a cost-
effective solution for libraries to enhance information retrieval and transform libraries into
dynamic information services.

VII. ADVANCED TECHNIQUES AND VARIANTS
7.1. Specialized RAG Architectures
Advanced RAG implementations incorporate sophisticated architectural improvements.
specialized variants such as Corrective RAG and Advanced RAG are presented, which
incorporate real-time feedback and optimization mechanisms [4]. These variants address
specific limitations of basic RAG implementations and provide enhanced performance for
complex use cases.

Graph-based RAG represents a significant advancement in retrieval architecture. Graph-based
RAG (GraphRAG) leverages LLMs to organize RAG data into graphs, showing strong potential
for gaining holistic insights from long-form documents. [11][11] To extend the capabilities of
GraphRAG to the medical domain, we propose unique Triple Graph Construction and U-
Retrieval techniques over it. In our graph construction, we create a triple-linked structure that
connects user documents to credible medical sources and controlled vocabularies.

7.2. Multi-modal RAG Systems
The integration of multiple modalities extends RAG capabilities beyond text-only applications.
multimodal retrieval techniques can significantly enhance question-answering capabilities
about visual inputs and accelerate the generation of multimodal content using a retrieval as
generation strategy [15]. This approach enables RAG systems to process and generate responses
incorporating visual, textual, and other data types.

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

170

7.3. Weighted Distribution and Advanced Retrieval
Recent research has introduced sophisticated weighting mechanisms for improved retrieval
quality. the integration of weighted distribution Retrieval-Augmented Generation (RAG) with
Llama Large language model significantly enhances factual accuracy and contextual relevance
in generated text. [20] Experimental results show substantial improvements precision, recall, F1
score, BLEU demonstrating effectiveness RAG mechanism prioritizing high-quality information
during generation process.

VIII. CHALLENGES AND SOLUTIONS
8.1. Scalability and Performance Challenges
RAG systems face significant scalability challenges as knowledge bases grow and query
volumes increase. ongoing challenges such as scalability, bias, and ethical concerns in
deployment [3] require careful attention during system design and implementation. Solutions
include distributed architectures, caching strategies, and optimized indexing approaches.

The absence of a standardized framework for implementation, coupled with the inherently
complex RAG process, makes it challenging and time-consuming for researchers to compare
and evaluate these approaches in a consistent environment [13]. Addressing these challenges
requires systematic approaches to system design and evaluation.

8.2. Hardware and Resource Considerations
Hardware requirements significantly impact RAG system deployment and performance. The
tests revealed that GPUs are essential for fast text generation, even for 7b models. [14][14] The
discussion is on technical and hardware considerations affecting LLMs performance. Planning
for appropriate computational resources is essential for successful RAG deployment.

Using a small, well-trained retriever encoder can reduce the size of the accompanying LLM,
thereby making deployments of LLM-based systems less resource-intensive [16] provides a
pathway for more efficient RAG implementations.

IX. EVALUATION AND TESTING

9.1. Comprehensive Evaluation Frameworks
Proper evaluation of RAG systems requires multi-dimensional assessment approaches. Our
toolkit has implemented 16 advanced RAG methods and gathered and organized 38 benchmark
datasets. [13] It has various features, including a customizable modular framework, a rich
collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-
processing scripts, and extensive and standard evaluation metrics.

The evaluation should assess both retrieval quality and generation effectiveness. The study
demonstrates the effectiveness of the RAG system in generating relevant suggestions with a

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

171

consistent accuracy of 93% [6], showing the importance of quantitative performance metrics.

9.2. Domain-Specific Testing
Testing RAG systems requires careful consideration of domain-specific requirements and
constraints. The article provides valuable insights for enterprise-scale deployments of RAG
systems across various application domains including healthcare, legal, technical support, and
financial services. Each domain presents unique challenges that must be addressed through
targeted testing approaches.

X. FUTURE DIRECTIONS AND INNOVATION
10.1. Emerging Research Areas
The field of RAG continues to evolve rapidly with new research directions emerging. Future
research directions are proposed, focusing on improving the robustness of RAG models,
expanding the scope of application of RAG models, and addressing societal implications [3].
These developments promise to enhance RAG capabilities and expand their applicability.
The methodology can be applied in various fields such as scientific discovery, educational
enhancement, research development, market analysis, search engine optimisation, and content
development [6], demonstrating the broad potential for RAG applications across diverse
domains.

10.2. Integration with Emerging Technologies
The integration of RAG with emerging technologies presents exciting opportunities. The
contributions this research provide scalable framework improving models, offering new
avenues dynamic context-aware weighting real-time feedback integration. [20] Future work will
focus on refining mechanism, exploring advanced retrieval algorithms, expanding applications
to multilingual settings domain-specific corpora.

XI. CONCLUSION

Building effective RAG systems requires careful consideration of architecture, implementation
details, and domain-specific requirements. The practical implications of this research lie in
enhancing the reliability of generative AI systems in various sectors where domain-specific
knowledge and real-time information retrieval is important [5]. Success depends on proper
planning, systematic implementation, and continuous optimization based on evaluation results.

The integration of RAG architecture with information retrieval systems and LLMs provides
more sensitive and accurate solutions in information-intensive tasks. [12] This study
emphasizes that the RAG architecture's ability to retrieve information by dynamically using the
learnings obtained from large datasets of LLMs strengthens applications in the field of NLP.

The future of RAG systems looks promising, with continued innovations in retrieval techniques,
generation quality, and application domains. By following the comprehensive approach

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

172

outlined in this guide, practitioners can build robust, scalable, and effective RAG systems that
deliver significant value across various applications and use cases.

REFERENCES
1. Langchain, "Retrieval augmented generation (RAG) | LangChain," internet, n.d..
2. C. B. Yang, Y. S. Kim, "Implementation of Retrieval Augmented Generation (RAG) Model

Using LLM: A RapidMiner-Based Approach," Korean Institute of Smart Media, 2025.
https://doi.org/10.30693/smj.2025.14.2.34

3. S. Gupta, R. Ranjan, S. N. Singh, "A Comprehensive Survey of Retrieval-Augmented
Generation (RAG): Evolution, Current Landscape and Future Directions," arXiv.org, 2024.
https://doi.org/10.48550/arXiv.2410.12837

4. D. L. G. Torres, R. A. S. Quintero, "Generacin y Recuperacin de Informacin Contextualizada:
Un Enfoque Avanzado Basado en RAG para el Procesamiento del Lenguaje Natural,"
Revista Ingeniera, Matemticas y Ciencias de la Informacin, 2025.
https://doi.org/10.21017/rimci.1122

5. Khan, M. T. Hasan, K. Kemell, J. Rasku, P. Abrahamsson, "Developing Retrieval Augmented
Generation (RAG) based LLM Systems from PDFs: An Experience Report," arXiv.org, 2024.
https://doi.org/10.48550/arXiv.2410.15944

6. J. Hurtado, "Harnessing Retrieval-Augmented Generation (RAG) for Uncovering
Knowledge Gaps," arXiv.org, 2023. https://doi.org/10.48550/arXiv.2312.07796

7. H. Liang, Y. Zhou, V. Gurbani, "Efficient and verifiable responses using Retrieval
Augmented Generation (RAG)," International Conference on AI-ML-Systems, 2024.
https://doi.org/10.1145/3703412.3703431

8. D. Danter, H. Mhle, A. Stckl, "Advanced Chunking and Search Methods for Improved
Retrieval-Augmented Generation (RAG) System Performance in E-Learning," AHFE
International, NaN. https://doi.org/10.54941/ahfe1005756

9. J. Mazumder, P. Mukhopadhyay, "Designing Question-Answer Based Search System in
Libraries: Application of Open Source Retrieval Augmented Generation (RAG) Pipeline,"
None, 2024. https://doi.org/10.17821/srels/2024/v61i5/171583

10. M. A. Quidwai, A. Lagan, "A RAG Chatbot for Precision Medicine of Multiple Myeloma,"
Cold Spring Harbor Laboratory, 2024. https://doi.org/10.1101/2024.03.14.24304293

11. J. Wu, J. Zhu, Y. Qi, "Medical Graph RAG: Towards Safe Medical Large Language Model via
Graph Retrieval-Augmented Generation," arXiv.org, 2024.
https://doi.org/10.48550/arXiv.2408.04187

12. B. Tural, Z. rpek, Z. Destan, "Retrieval-Augmented Generation (RAG) and LLM
Integration," International Service Availability Symposium, 2024.
https://doi.org/10.1109/ISAS64331.2024.10845308

13. J. Jin, Y. Zhu, X. Yang, C. Zhang, Z. Dou, "FlashRAG: A Modular Toolkit for Efficient
Retrieval-Augmented Generation Research," The Web Conference, 2024.
https://doi.org/10.1145/3701716.3715313

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

173

14. Radeva, I. Popchev, L. Doukovska, M. Dimitrova, "Web Application for Retrieval-
Augmented Generation: Implementation and Testing," Electronics, 2024.
https://doi.org/10.3390/electronics13071361

15. X. Wang et al., "Searching for Best Practices in Retrieval-Augmented Generation,"
Conference on Empirical Methods in Natural Language Processing, 2024.
https://doi.org/10.48550/arXiv.2407.01219

16. P. B''echard, O. M. Ayala, "Reducing hallucination in structured outputs via Retrieval-
Augmented Generation," North American Chapter of the Association for Computational
Linguistics, 2024. https://doi.org/10.18653/v1/2024.naacl-industry.19

17. J. Benita, K. V. C. Tej, E. V. Kumar, G. V. Subbarao, C. Venkatesh, "Implementation of
Retrieval-Augmented Generation (RAG) in Chatbot Systems for Enhanced Real-Time
Customer Support in E-Commerce," None, 2024.
https://doi.org/10.1109/ICACRS62842.2024.10841586

18. P. K. Haridasan, "The Salesforce Einstein Trust Layer for Retrieval-Augmented Generation
(RAG) for Enterprise Applications," INTERANTIONAL JOURNAL OF SCIENTIFIC
RESEARCH IN ENGINEERING AND MANAGEMENT, 2024.
https://doi.org/10.55041/ijsrem28465

19. O. Unlu et al., "Retrieval Augmented Generation Enabled Generative Pre-Trained
Transformer 4 (GPT-4) Performance for Clinical Trial Screening," medRxiv, 2024.
https://doi.org/10.1101/2024.02.08.24302376

20. L. Tong, Q. Ge, "Achieving Higher Factual Accuracy in Llama LLM with Weighted
Distribution of Retrieval-Augmented Generation," None, 2024.
https://doi.org/10.31219/osf.io/ctw8v

ABBREVIATIONS

 AI – Artificial Intelligence

 BLEU – Bilingual Evaluation Understudy

 BERT – Bidirectional Encoder Representations from Transformers

 ChromaDB – Chroma Vector Database

 F1 Score – Harmonic Mean of Precision and Recall

 GPT – Generative Pre-trained Transformer

 GUI – Graphical User Interface

 JSON – JavaScript Object Notation

 LLM – Large Language Model

 LangChain – Language Chain (a framework for LLM orchestration)

 METEOR – Metric for Evaluation of Translation with Explicit ORdering

 MCC – Matthews Correlation Coefficient

 NLP – Natural Language Processing

 PaSSER – Platform for Scalable and Secure Retrieval-Augmented Responses

 RAG – Retrieval-Augmented Generation

https://doi.org/10.31219/osf.io/ctw8v

International Journal of Core Engineering & Management

Volume-8, Issue-01, 2025 ISSN No: 2348-9510

174

 RECTIFIER – Retrieval-Enhanced Clinical Trial Inclusion Framework for Evaluation and
Recommendation

 ROUGE – Recall-Oriented Understudy for Gisting Evaluation

 Qdrant – Query and Data Retrieval Vector Engine

 U-Retrieval – Unified Retrieval Framework (Top-down and Bottom-up Approach)

