

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

5

SINGLETON PATTERN IMPLEMENTATIONS AND THREAD SAFTEY
CONSIDERATIONS IN MULTITHREADED ENVIRONMENT

Arun Neelan

Independent Researcher
PA, USA

arunneelan@yahoo.co.in

Abstract

The Singleton Pattern remains one of the most widely recognized design patterns in object-
oriented programming, offering controlled access to a single instance of a class. While its intent
is conceptually simple, the practical implementation of the pattern—particularly in multi-
threaded, distributed, and modular environments—introduces a range of technical challenges.
This review paper provides a systematic examination of the various strategies for
implementing the Singleton Pattern, including classic lazy initialization, thread-safe
techniques such as synchronized accessors and double-checked locking, the initialization-on-
demand holder idiom, and Enum-based singletons. Each approach is analysed with respect to
its benefits, limitations, and performance implications. Additionally, the paper explores
advanced considerations such as class loading issues, reflection-based vulnerabilities,
serialization concerns, and the use of Singleton within Dependency Injection frameworks.
Through this comprehensive analysis, the paper aims to assist software professionals in
selecting the most appropriate Singleton implementation tailored to the specific requirements
and constraints of their systems. The paper also highlights the pattern’s limitations in modern
architectures and discusses future trends, such as better integration with Dependency Injection
and potential alternatives in distributed or functional contexts, guiding future use and
adaptation of the Singleton pattern.

Keywords: Creational Design Patterns, Software Design Patterns, Singleton Pattern, Object-
Oriented Design, Software Engineering.

I. INTRODUCTION
In software engineering, design patterns are established solutions to common problems that
developers encounter during the development process. These patterns promote best practices,
leading to more efficient, maintainable, and scalable code. The Singleton pattern is a well-
known Creational design pattern that ensures a class has only one instance and provides a
global point of access to it. This is particularly useful in scenarios where coordinated access to a
shared resource is essential, such as configuration managers, logging services, caching systems,
or thread pools.
Although the Singleton pattern is conceptually simple, it presents many nuances—especially

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

6

regarding thread safety, performance, testability, and language-specific implementation details.
In Java, several approaches to implementing the Singleton pattern have evolved over time, each
with its own set of advantages and drawbacks.

II. SINGLETON PATTERN – DEFINITION AND CLASS DIAGRAM
The Singleton Pattern guarantees that a class has only a single instance and offers a global point
of access to that instance [1].

Fig. 1. Singleton Pattern – Class Diagram

III. IMPLEMENTATIONS – CHARACTERISTICS AND EVALUATION
The following sections discuss in detail the different ways of creating Singleton instance along
with pros and cons of each in detail.

A. Classic Implementation
The section below illustrates a custom implementation of the Singleton pattern. This
implementation ensures that only one instance of the class is created, and it is created only
when needed (Lazy Initialization). Lazy Initialization is especially beneficial when the class
performs resource-intensive operations during its initialization, as it delays the creation of the
instance until it is required.
The drawback of the classic Singleton implementation is that it creates a single instance under
normal circumstances, but in a multi-threaded environment, it doesn't ensure thread safety. If
multiple threads invoke the getInstance method simultaneously, they may both bypass the null
check and create separate instances, thereby violating the Singleton pattern. This leads to
inconsistent behavior. Additionally, creating multiple instances can result in unnecessary
resource consumption or even errors, especially if the Singleton manages critical resources.

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

7

Listing 1. Classic Singleton Pattern Implementation in Java.

B. Thread Safe Implementations

1. Synchronized Method Approach: This is achieved by making the getInstance method
synchronized.

Listing 2. Singleton – Synchronized Method in Java.

While the implementation ensures thread safety, there are several limitations associated with
using synchronization in the getInstance method:

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

8

 Performance Overhead: Thread safety is applied to the entire method, including
sections that don’t require synchronization. This unnecessary synchronization
creates a performance bottleneck, leading to low performance, reduced throughput,
and scalability concerns, particularly when the method is called frequently.

 Unnecessary Synchronization Post-Initialization: Thread safety remains enforced
even after the instance has been created. However, synchronization is only
necessary during the instance's initialization phase. Once the instance is created,
synchronization can be avoided, as subsequent access does not pose a thread safety
risk. This redundant synchronization adds unneeded overhead after the instance is
initialized.

Avoiding method synchronization is recommended, even in applications where performance
isn’t the primary concern, by selecting a simpler and more efficient alternative solution from the
available options. Leaving inefficient code in place can lead to problems in the future, especially
when changes occur, such as shifts in the customer base or traffic patterns.

2. Double Checked Locking Approach: This approach aims to optimize performance by
reducing synchronization overhead. The key idea is to check if the instance has already
been initialized (first check), and only synchronize when necessary (second check inside
the synchronized block), to minimize the time spent inside the synchronized section [2].

Listing 3. Singleton– Double Checking Locking Method in Java

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

9

3. Initialization-on-demand Holder Idiom (Bill Pugh): This approach leverages a static
nested class to encapsulate and initialize the Singleton instance. The inner class is only
loaded when it's accessed, and the classloader ensures thread safety when loading the
class, so no explicit synchronization is needed.

Listing 4. Singleton– Bill Pugh in Java

4. Eager Initialization Approach: In this approach, the instance is created at the time of

class loading, rather than when it is needed. This is appropriate when the application
always creates and uses an instance, or the overhead of creation and runtime aspects of
the Singleton isn’t onerous [2, p. 181].

Listing 5. Singleton– Eager Initialization Method in Java

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

10

5. Static Block Initialization: This approach creates the Singleton instance at the time of
class loading, but the initialization occurs inside a static block. It is recommended when
additional logic or exception handling is required during the initialization process.

Listing 6. Singleton – Static Block Initialization Method in Java

6. Challenges with Custom Thread-Safe Implementation Approaches and Mitigation:
Although the thread-safe implementation approaches discussed ensure that only one
instance is created in a multi-threaded environment, there are still other ways through
which more than one instance can be created.
a) Class Loading and Multiple Class Loaders: When an app uses multiple class loaders,

multiple instances of a Singleton class can be created. To prevent this, ensure the
Singleton is loaded by just one class loader, which can be managed through proper
control or a shared parent class loader.

b) Reflection-Based Attacks: The private constructor of the Singleton class can be
accessed through Reflection APIs, leading to the creation of multiple instances and
violating the pattern. To avoid this issue, an exception can be thrown from the
private constructor if an instance already exists. Additionally, if the constructor is
invoked before the getInstance method initializes the instance, ensure that it is
properly constructed with all necessary state.

c) Serialization Issues: Serialization can compromise the Singleton pattern by creating a
new instance during the deserialization process. To preserve the Singleton property,
the readResolve method should be implemented to return the existing instance.
Additionally, marking instance variables as transient can prevent them from being

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

11

serialized. For a deeper understanding of the serialization and deserialization
process, including customization options, refer to the Java Specification for the
relevant version (e.g., Java SE 8, Java SE 11, etc.) [3] [4], or other official
documentation corresponding to the specific release.

Listing 7. Singleton – Handling Serialization in Java

7. Enum Singleton: This approach is considered the best way to implement a Singleton [5]
because in Java, enums are designed with built-in protections against common issues
such as reflection attacks, serialization problems, and multi-threading concerns.
However, this method cannot be used if the Singleton needs to extend a class other than
Enum. Additionally, an Enum in Java can have methods, just like any ordinary class.
These methods can define behaviors or provide utility functions specific to the enum
constants. For more details on how to define methods within an enum, as well as other
features of enums, refer to [6] [7] or the relevant version of the Java specification.

Listing 8. Singleton – Enum Method in Java

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

12

The above sections have detailed the available options for creating a Singleton instance, along
with their pros, cons, and mitigation strategies.

C. Dependency Injection Approach
While Singleton ensures shared state and controlled resource usage, it tightly couples the class
to its lifecycle management, reducing flexibility and complicating unit testing. Dependency
Injection (DI) offers a more robust alternative by delegating the responsibility of managing
object lifecycles to an external container, thereby promoting loose coupling and enhancing
testability. When integrating the singleton pattern within a DI-based architecture, the DI
container is configured to provide a singleton-scoped instance, ensuring that only one object is
created and reused wherever the dependency is injected. For example, in a Java application
using a DI framework like Spring, a class can be annotated with @Service or @Component and
scoped as a singleton (which is the default behavior) to ensure a single instance is maintained
throughout the application.

Listing 9. Singleton – Dependency Injection in Java

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

13

In this example, MyService is registered as a singleton within the Spring container, and
MyComponent receives it via constructor-based dependency injection. This method provides
the benefits of singleton behavior without manual implementation, improving maintainability
and supporting better testing practices.

IV. LIMITATIONS AND CHALLENGES
The Singleton pattern, while effective in ensuring a single instance throughout a system,
presents several limitations and challenges. One major issue is its impact on testability, as it
introduces tight coupling between classes, making it difficult to mock or replace instances
during unit tests. Achieving thread safety is another recurring challenge, particularly when
multiple threads concurrently access the Singleton instance. While different implementation
strategies, such as eager initialization and double-checked locking, attempt to address these
issues, they often come with trade-offs in terms of performance and complexity. Moreover, the
global access provided by the Singleton can increase coupling and make it difficult to manage
the state across large applications.
Furthermore, while the Dependency Injection (DI) approach is often seen as a solution to some
of the Singleton's drawbacks, its use can sometimes cause the pattern to resemble other design
patterns, such as the Service Locator or Factory, making it harder to distinguish between them
in certain contexts. Despite these challenges, the Singleton pattern remains widely used, and
ongoing discussions continue to focus on refining its implementation and exploring its
relevance in modern software architecture.

V. FUTURE TRENDS
As software development continues to evolve, the Singleton pattern is expected to adapt to
modern challenges and trends. One key trend is its increasing integration with Dependency
Injection (DI) frameworks, which can help address issues like tight coupling and poor
testability. Additionally, performance optimizations will likely remain a priority, especially in
multi-threaded environments, where techniques for improving thread safety and reducing
initialization overhead will continue to be refined. The rise of distributed systems and
microservices may also push for hybrid patterns that maintain Singleton-like behavior while
supporting scalability across services. Furthermore, the growing emphasis on functional
programming might inspire new approaches to implementing Singleton behavior without
sacrificing immutability. As software architectures become more complex, alternative patterns
like Multiton or Service Locator may increasingly complement or replace the traditional
Singleton in certain use cases, offering more flexibility in system design.

VI. CONCLUSION
The Singleton Pattern remains a fundamental design approach for managing shared resources
in object-oriented systems. While it offers a clear solution, its correct implementation—

International Journal of Core Engineering & Management

Volume-8, Issue-02, 2025 ISSN No: 2348-9510

14

especially in multi-threaded environments, can be complex and requires careful consideration
of thread safety, performance, and testability. This review has explored various
implementations, including lazy initialization, synchronized accessors, double-checked locking,
and Enum-based Singletons, each with its own strengths and drawbacks.

Mitigation strategies like proper synchronization and reflection handling are essential, and
selecting an approach should depend on the application's specific requirements. As
development practices evolve, trends such as integration with Dependency Injection
frameworks, improved testability, and support for distributed or functional systems are
shaping how the Singleton pattern is applied. By understanding its limitations and the direction
it’s heading, developers can make more informed, future-ready design decisions.

REFERENCES

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Elements of Reusable
Object-Oriented Software. Pearson Deutschland GmbH, 1995.

2. E. Freeman and E. Robson, Head first design patterns: Building Extensible and
Maintainable Object-Oriented Software. 2021.

3. Oracle, "Serialization Specification (Java SE 11 & JDK 11)," Oracle. [Online]. Available:
https://docs.oracle.com/en/java/javase/11/docs/specs/serialization/index.html.

4. Oracle, "Serializable (Java SE 11 & JDK 11)," Oracle. [Online]. Available:
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/Serializable.
html.

5. J. Bloch, Effective java. Addison-Wesley Professional, 2018.
6. ―Enum Types (The JavaTM Tutorials > Learning the Java Language > Classes and

Objects).‖ Available: https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
7. ―The Java® language specification.‖ Available:

https://docs.oracle.com/javase/specs/jls/se8/html/index.html

