

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

196

THE IMPACT OF SOLID PRINCIPLES ON CODE QUALITY AND SOFTWARE
LIFECYCLE

AzraJabeen Mohamed Ali

Independent researcher
Pleasanton, California
Azra.jbn@gmail.com

Abstract

This paper explores the impact of SOLID principles on code quality and the software lifecycle,
emphasizing their role in improving software design, enhancing maintainability, and supporting
the long-term evolution of software systems. Through an analysis of case studies, best practices,
and real-world applications, the study investigates how adhering to SOLID principles can
prevent common software development issues such as code duplication, tight coupling, and lack of
extensibility. Additionally, the paper discusses how these principles influence various stages of
the software lifecycle, from initial design and implementation to maintenance and refactoring. By
aligning development practices with SOLID principles, organizations can achieve greater
flexibility, reduce technical debt, and ensure that their software remains adaptable to future
changes. Ultimately, this paper highlights the importance of integrating SOLID principles into
daily programming practices to enhance both code quality and the overall software lifecycle
Index Terms— SOLID, framework, architecture, decoupling, interface, abstraction, polymorphism

I. INTRODUCTION

The SOLID principle is a set of five design principles that help software developers create more
maintainable, flexible, and scalable object-oriented software systems. The SOLID principles were
introduced by Robert C. Martin, also known as Uncle Bob. The acronym SOLID stands for the
following principles:

 S - Single Responsibility Principle (SRP)

 O - Open/Closed Principle (OCP)

 L - Liskov Substitution Principle (LSP)

 I - Interface Segregation Principle (ISP)

 D - Dependency Inversion Principle (DIP)

II. S - SINGLE RESPONSIBILITY PRINCIPLE (SRP)

It states that a class should have only one reason to change, meaning that a class should have only
one responsibility or job. A class should focus on one specific task or role, rather than trying to
handle multiple unrelated tasks. If a class has more than one responsibility, it can become difficult

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

197

to maintain, modify, or extend without affecting other parts of the system. The "reason to change"
refers to factors or conditions that would cause the class to be modified. If a class has multiple
responsibilities, then there will be multiple reasons to change it, which can lead to tightly coupled
code. Changes in one responsibility could negatively impact on the other responsibilities. By
adhering to SRP, it is necessary to ensure that different concerns (such as data management, user
interface, and business logic) are separated into different classes. This leads to more modular and
organized code.

A. HOW TO IMPLEMENT SRP

 Identify the Core Responsibility of Each Class: Before creating any class, it is necessary to
identify what core responsibility it should handle. This means that the class should focus
on one thing (e.g., managing user data, processing payments, handling authentication).

 Avoid Mixing Different Concerns in the Same Class: A class should not have more than
one reason to change. For example, if we have a class that is responsible for both user
authentication and user profile management, it violates SRP because both concerns could
change for different reasons (e.g., changes in authentication methods or changes in profile
structure).

 Use Abstraction to Decouple Responsibilities: When we identify multiple responsibilities
within a class, consider abstracting them out into separate classes or modules. This keeps
each class focused on one task.

 Group Related Functions Into Specialized Classes: If several functions that are logically
related but not tied to one class, then it is better to group them into their own specialized
classes. This helps in organizing the code and makes each class easier to manage.

 Regular Refactoring: Regular refactoring of code ensures that classes still follow the SRP as
the application evolves. Adding new features or requirements may lead to situations where
a class ends up handling more than one responsibility.

B. BENEFITS OF SRP

 Improved Maintainability: Since each class has a single responsibility, changes can be
made independently without affecting other parts of the system.

 Better Reusability: Classes that adhere to SRP are more reusable in different contexts
because they are focused on a specific task.

 Easier Testing: Testing becomes easier when each class handles only one responsibility,
allowing us to write smaller, more focused test cases.

C. CHALLENGES

While the Single Responsibility Principle (SRP) brings many benefits, there are some challenges
and trade-offs that developers may face when applying it in real-world projects. These challenges
can make it difficult to fully adhere to SRP, especially in complex systems.

 Over-Splitting Classes:
o Challenge: In an attempt to strictly adhere to SRP, developers may end up creating

an excessive number of small classes. This can result in an overly fragmented
system, making it harder to understand the overall structure and flow of the
application. Too many small classes can lead to increased complexity in managing

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

198

dependencies, navigation through the codebase, and overhead in maintaining many
separate units.

o Solution: Strike a balance between class size and responsibility. It's important to
group logically related behaviors into a single class if splitting them into separate
classes doesn’t provide clear benefits.

 Determining What Constitutes a "Single Responsibility":
o Challenge: It can be subjective to determine what counts as a "single responsibility."

In some cases, a responsibility might span multiple activities, leading to confusion
about where to draw the line. Developers may struggle to identify where one
responsibility ends and another begins, leading to ambiguity and potentially
violating SRP without realizing it.

o Solution: Focus on a clear domain-driven design and clearly define the
responsibilities of classes. The more explicit the domain boundaries, the easier it
becomes to apply SRP.

 Balancing SRP with Other Principles:
o Challenge: Applying SRP in isolation without considering other design principles

(such as DRY — Don’t Repeat Yourself, KISS — Keep It Simple, and YAGNI — You
Aren’t Gonna Need It) can result in over-engineering. Over-engineering, where the
application is divided into too many tiny classes, can reduce performance, increase
unnecessary complexity, and increase the amount of boilerplate code.

o Solution: Always consider SRP alongside other principles. Sometimes a slightly
broader class with multiple closely related responsibilities may be better than
creating many smaller classes that only slightly differ.

 Handling Cross-Cutting Concerns:
o Challenge: Certain features in an application, such as logging, authentication, or

error handling, might seem to violate SRP because they affect multiple parts of the
system. Cross-cutting concerns can lead to code duplication or a violation of SRP
because they don’t belong to a specific class but still need to be handled across
multiple classes.

o Solution: Aspect-Oriented Programming (AOP) or dependency injection
frameworks can help handle cross-cutting concerns more effectively without
violating SRP. Instead of putting these concerns directly into business logic classes,
they can be modularized and applied as needed.

 Increased Dependencies:
o Challenge: When a system breaks into smaller, single-responsibility classes, the

number of dependencies between these classes can increase. This can lead to a tight
coupling between components. Increased coupling may negate some of the benefits
of SRP by making the system harder to change or extend. This also increases the
complexity of managing dependencies.

o Solution: Dependency injection, interfaces, and abstract classes are to decouple
classes and manage dependencies more effectively.

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

199

 Difficulty in Refactoring Legacy Code:
o Challenge: Legacy systems often have classes with multiple responsibilities, and

refactoring these classes to adhere to SRP can be a difficult and time-consuming
task. In older systems, refactoring code to follow SRP can be risky, especially if the
class is widely used throughout the application. This may introduce bugs or
regressions.

o Solution: Refactoring should be done incrementally. Prioritize refactoring classes
that are critical for maintenance or where changes are frequently needed. Write tests
before refactoring to ensure the system’s functionality remains intact.

 Performance Concerns:
o Challenge: Splitting a class with many responsibilities into multiple smaller classes

may require additional communication between the classes, leading to potential
performance overhead. If classes are split too much, it may result in excessive
method calls, increased memory usage, and possible slower execution, especially in
performance-sensitive systems.

o Solution: The performance impact is to be measured and ensured that the design
doesn’t compromise the system’s requirements. In cases of critical performance, it is
necessary to reconsider some parts of the design or optimize the communication
between classes.

 Business Domain Complexity:
o Challenge: Some business domains are naturally complex, and encapsulating all

responsibilities within a single class could lead to a class that has a very large scope.
In such cases, applying SRP can be challenging without making the design artificial
or overly complicated. If we try to apply SRP strictly, we might end up with a
convoluted design that doesn't reflect the real-world complexity of the domain,
making the code harder to understand and manage.

o Solution: Ensure that each responsibility is related to a logical grouping in the
domain and break the responsibility into sub-responsibilities only when necessary.
Be mindful of the domain context and business logic.

III. O – OPEN/CLOSED PRINCIPLE (OCP)

It emphasizes the importance of making software entities (classes, modules, functions, etc.) open
for extension but closed for modification. The goal of the Open/Closed Principle is to enable to
extend the behavior of a system without modifying the existing, tested code. This approach helps
maintain the stability of the codebase while allowing for flexibility and scalability as new features
or requirements are introduced.

A. HOW TO IMPLEMENT OCP

 Using Inheritance (Polymorphism): The most common way to adhere to OCP is by using
inheritance and polymorphism. By defining base classes or interfaces, it is possible to create
subclasses that extend functionality without modifying the base class. For example: If we

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

200

have a vehicle that has different types of vehicles like car, truck, bicycle. If we want to add
new vehicles, we can extend the existing vehicle class using inheritance, rather than
modifying the original class. Now, if we want to add a new vehicle, like a van, it is not
necessary to change the Vehicle class. Instead, we just need to create a new subclass.

 Using Interfaces or Abstract Classes: To establish a contract for extending classes, an
interface or abstract class is to be defined. This allows the behavior to be extended by
implementing the interface without modifying the original class.

 Strategy Pattern: The Strategy Pattern is a design pattern that allows a family of algorithms
to be defined and encapsulated in a way that they can be swapped without altering the
client code. This is a good way to adhere to OCP.

 Event-Driven Design: If system relies heavily on certain actions triggering other actions,
event-driven design can be used to handle extensions. By raising events and responding to
them in a modular way, new behavior can be added to the system without modifying
existing components.

B. BENEFITS OF OCP

 Minimizes Risk: By ensuring that existing code does not need to be modified, we are
reducing the risk of introducing bugs into the system.

 Improves Maintainability: Since new features are added through extension, the existing
code remains stable, and developers can focus on new functionality without worrying
about breaking existing code.

 Promotes Reusability: Extensions and new features can be reused across different parts of
the system or even in other projects without altering existing code.

C. CHALLENGES IN OCP

 Balancing Flexibility with Simplicity:
o Challenge: Designing classes or modules to be open for extension while keeping the

design simple and not over-engineering can be tricky. Trying to make every class
highly flexible (by over-abstracting or overusing interfaces) can lead to unnecessary
complexity.

o Solution: It is necessary to apply OCP judiciously, keeping in mind the balance
between flexibility and complexity. Use abstraction only when necessary and prefer
straightforward solutions that still allow for extensions.

 Increased Initial Development Time:
o Challenge: Initially designing a system that adheres to OCP often requires more

time. Developers may need to anticipate future changes and create a flexible
architecture upfront.

o Solution: Initially designing a system that adheres to OCP often requires more time.
Developers may need to anticipate future changes and create a flexible architecture
upfront.

 Difficulty in Predicting Future Changes:
o Challenge: OCP encourages designing code that is open for future extensions, but it

can be challenging to predict exactly how the system will evolve. Overgeneralizing

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

201

can lead to solutions that aren't practical or effective for future changes.
o Solution: It is suggested to apply YAGNI (You Aren’t Gonna Need It) and try to

implement OCP with just enough abstraction. Avoid over-engineering by making
extensions possible through simple interfaces or extension points without
predicting every possible future change.

IV. L- LISKOV SUBSTITUTION PRINCIPLE (LSP)

The Liskov Substitution Principle states that Objects of a superclass should be replaceable with
objects of its subclass without affecting the correctness of the program. In simpler terms, if class B
is a subclass of class A, objects of type A should be replaceable with objects of type B without
altering the desirable properties of the program. This means that any instance of a subclass should
behave in such a way that it does not violate the expectations set by the parent class.

A. HOW TO IMPLEMENT LSP

 Ensure Subclasses Preserve Behavior of Superclass: The subclass should adhere to the
same method contracts as the superclass. For example, if the superclass has a method that
returns an object, the subclass should return a compatible object.

 Do Not Narrow the Behavior of the Superclass: Ensure that all methods in the subclass
honor the input-output contract of the superclass. Do not remove or restrict functionality
unless it's explicitly part of a new class that follows Interface Segregation (another SOLID
principle).

 Avoid Changing Method Contracts: Ensure that the method signature (input parameters,
output, and exceptions) of the subclass matches or is compatible with the base class. If a
method in the superclass expects a particular type or range of inputs, the subclass method
should not violate this contract.

B. BENEFITS OF LSP

 Maintains Correct Behavior: When applied correctly, LSP ensures that subclasses can be
safely used in place of their parent class, preserving the behavior expected by the client
code.

 Improves Extensibility: By following LSP, systems can be more easily extended by adding
new subclasses without altering existing code that relies on the base class.

 Enhances Polymorphism: LSP supports polymorphism by ensuring that any subclass can
substitute its superclass, enabling more flexible and reusable code.

 Improves Maintainability: Ensuring that a subclass adheres to the LSP makes the system
easier to maintain, as the behavior of derived classes remains predictable and consistent
with the base class.

C. CHALLENGES IN LSP

 Ensuring Behavioral Consistency:
o Challenge: One of the most fundamental challenges in adhering to LSP is ensuring

that subclasses maintain the same behavior as their base class. A subclass may
inadvertently change the behavior of an inherited method, causing issues when the
subclass is substituted for the parent class.

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

202

o Solution: It is necessary to carefully design subclasses to respect the contract set by
the parent class. Ensure that the behavior of the subclass does not deviate from the
expectations set by the superclass.

 Subclasses Narrowing the Interface:
o Challenge: Subclasses may narrow the interface or reduce the functionality of the

superclass. For instance, if a superclass defines a method with wide functionality, a
subclass that limits the functionality can break LSP because the subclass is not a true
substitute for the superclass.

o Solution: If some behaviors are not applicable to certain subclasses (like a Penguin
not flying), we can refactor the code using design patterns like interface segregation.
For example, we could split the Bird class into two separate hierarchies: one for
flying birds and one for non-flying birds.

 Overriding Methods with Different Signatures:
o Challenge: When a subclass overrides a method from the base class with a different

method signature, it can break the substitution behavior. The overridden method
may expect different arguments or return types, making it incompatible with code
that expects the base class's method signature.

o Solution: It is to ensure that the overridden methods in the subclass have the same
signature and return type as the methods in the base class. If different behavior is
needed, use polymorphism properly or refactor using more specialized methods or
interfaces.

V. I – INTERFACE SEGREGATION PRINCIPLE (ISP)
It states that no client should be forced to depend on methods it does not use. In other words, it
suggests that large, general-purpose interfaces should be split into smaller, more specific ones that
are tailored to the needs of the client.

A. HOW TO IMPLEMENT ISP

 Identifying the different clients: The first step in implementing ISP is to identify the
various client types that will interact with interfaces. A client can be a class, a module, or a
service that uses an interface. Each client might have different requirements for the
behavior that an interface exposes.

 Designing Small, Specific Interfaces: Large, general-purpose interfaces are to be broken
down into smaller, more specific interfaces that only contain the methods that are relevant
for a given client.

 Ensuring Clients Implement Only the Methods They Need: After creating smaller, more
focused interfaces, it is to make sure that each client only implements the interfaces it
actually needs.

 Applying Composition Instead of Inheritance (if needed): If a class needs to perform
multiple behaviors (e.g., print, scan, and fax), it is to consider using composition rather
than inheritance. This allows the class to compose multiple smaller interfaces, which are
more flexible and maintainable than a large, monolithic one.

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

203

 Using Dependency Injection (DI) Where Appropriate: When a class needs multiple
interfaces, dependency injection is used to pass those interfaces as dependencies. This
allows passing only the relevant behaviour to a class, maintaining flexibility.

B. BENEFITS OF ISP

 No Unnecessary Methods: Each machine class implements only the methods it needs.

 Decoupled Classes: The classes are now decoupled from irrelevant methods.

 Better Maintenance: Changes to one interface won't affect classes that don't implement it.

C. CHALLENGES IN ISP

 Identifying Appropriate Interfaces:
o Challenge: Determining the right granularity for splitting interfaces can be difficult.

Too many small interfaces might lead to an overly fragmented design, while too
few interfaces could still violate ISP.

o Solution: It is necessary to carefully analyze the roles and responsibilities of the
classes and clients. It is better to split interfaces when there are clients that have no
need for the other methods in a large interface. The Single Responsibility Principle
(SRP) can be focused to help guide this process.

 Increased Number of Interfaces:
o Challenge: While splitting large interfaces can be a good practice, it can also result

in an increased number of interfaces that need to be maintained. This can lead to
additional overhead, especially in large projects where many interfaces are required
to handle different client needs.

o Solution: It is necessary to ensure that the interfaces serve a clear and meaningful
purpose. Related methods are to be grouped under more general interfaces if the
distinction between them is not significant enough to warrant separate interfaces.
Composition is to be used rather than inheritance when needed.

 Dependency Management:
o Challenge: When splitting large interfaces into smaller ones, managing

dependencies between these interfaces can become complicated. A class might need
to implement several smaller interfaces, leading to potential circular dependencies
or complex interdependencies.

o Solution: Dependency inversion is to be applied where appropriate and ensured
that interfaces only depend on abstractions. composition and dependency injection
are to be used to decouple interfaces and prevent circular dependencies.

VI. D – DEPENDENCY INVERSION PRINCIPLE (DIP)
The Dependency Inversion Principle is divided into two main guidelines:

 High-level modules should not depend on low-level modules. Both should depend on
abstractions.

 Abstractions should not depend on details. Details (concrete implementations) should

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

204

depend on abstractions.
High-level modules are responsible for implementing the core functionality or business logic of the
application. Low-level modules are responsible for details, such as the data access layer or
interaction with external systems (e.g., a database or file system). The key idea behind DIP is that
high-level modules should not be tightly coupled to low-level modules. Instead, both should
interact through abstractions (such as interfaces or abstract classes). This makes the system more
flexible, as high-level modules can remain unchanged even when low-level modules change.

A. HOW TO IMPLEMENT DIP

 Define Abstractions (Interfaces/Abstract Classes): Identifying common functionality that
can be abstracted. Creating an interface or abstract class that represents the contract for
dependency.

 Inversion of Control (IoC): Using techniques like Dependency Injection (DI) to inject
dependencies into high-level modules rather than having them create the dependencies
themselves.

 Provide Concrete Implementations: Concrete classes are to be created for low-level
modules that implement abstract interfaces. These concrete classes should provide specific
logic for each service (e.g., database, file system).

 Depending on Abstractions, Not Concrete Implementations: High-level modules should
rely on abstractions (interfaces/abstract classes) instead of concrete implementations.
Dependency injection is to be used to supply concrete implementations.

 Avoid Hard-Coding Dependencies: Instantiating concrete classes are to be avoided
directly within high-level modules. Instead, dependencies are passed through constructors,
method parameters, or properties.

B. BENEFITS OF DIP

 Loose Coupling: High-level modules do not depend on low-level modules; both depend on
abstractions (interfaces or abstract classes).

 Increased Flexibility: It is easy to swap or replace components without impacting the
overall system.

 Improved Testability: Testing is easier because dependencies can be mocked or replaced
with test doubles (like mocks or stubs).

 Easier Maintenance: Changes in low-level modules don’t affect high-level modules.

 Better Code Reusability: Reusing components across different contexts becomes easier.

 Promotes Clean Architecture: DIP helps enforce the separation of concerns in the system
architecture.

 Reduces the Risk of Bugs: Fewer interdependencies between components help reduce the
chance of bugs when making changes.

C. CHALLENGES IN DIP

 Complexity: Introducing abstraction layers and dependency injection can make the system
design more complex. It can lead to more classes and interfaces, which could increase the
initial overhead

 Overuse of Abstractions: Sometimes, developers might overuse abstractions, which can

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

205

lead to unnecessary complexity and make the system harder to understand.

 Learning Curve: For teams unfamiliar with dependency injection and the principles of
SOLID, adopting DIP might take some time

D. CONCLUSION

By following SOLID, developers can write code that is more modular, maintainable, and easy to
understand. SRP ensures that classes have only one reason to change, making them easier to test
and debug. OCP allows systems to be extended without modifying existing code, which minimizes
the risk of introducing bugs when adding new features. LSP ensures that derived classes are
interchangeable with base classes, leading to more reliable and reusable code. ISP advocates for
minimal, cohesive interfaces, making it easier to use and implement code in a decoupled manner.
DIP encourages dependency inversion, making systems more flexible, testable, and less prone to
direct coupling between components. These principles help reduce technical debt by promoting
clear, organized, and well-structured code. Adherence to SOLID principles makes the code more
robust against change and reduces the likelihood of regression errors. The adoption of SOLID
principles leads to higher code quality, making the system more flexible, maintainable, and
scalable. The principles not only ensure that software is easier to modify and extend but also
reduce the cost and risk associated with maintaining and evolving the system over time. By
embracing these principles, developers can build more robust software that is better equipped to
meet both current and future needs in an increasingly complex technological landscape.

REFERENCES

1. Microsoft, “C# Best Practices : Dangers of Violating SOLID Principles in C#”
https://learn.microsoft.com/en-us/archive/msdn-magazine/2014/may/csharp-best-
practices-dangers-of-violating-solid-principles-in-csharp (Jul 01, 2015)

2. objectmentor.com, “SRP: The Single Responsibility Principle”
https://web.archive.org/web/20150202200348/http://www.objectmentor.com/resources
/articles/srp.pdf (Feb 02, 2015)

3. objectmentor.com, “The Open-Closed Principle“
https://web.archive.org/web/20150905081105/http://www.objectmentor.com/resources
/articles/ocp.pdf (Sep 05, 2015)

4. objectmentor.com, “The Liskov Substitution Principle“
https://web.archive.org/web/20150905081111/http://www.objectmentor.com/resources
/articles/lsp.pdf (Sep 05, 2015)

5. objectmentor.com, “The Interface Segregation Principle“
https://web.archive.org/web/20150905081110/http://www.objectmentor.com/resources
/articles/isp.pdf (Sep 05, 2015)

6. Martin, Robert C. “The Principles of OOD”
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod (Sep 10, 2014)

7. Martin, Robert C. “Getting a SOLID start.”
https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start (Feb 13, 2009)

8. Robert Martin “Clean Architecture: A Craftsman's Guide to Software Structure and Design
(Robert C. Martin Series) 1st Edition” Pearson publisher (Sep 10, 2017)

9. Gary Mclean “Adaptive Code via C#: Agile coding with design patterns and SOLID

https://learn.microsoft.com/en-us/archive/msdn-magazine/2014/may/csharp-best-practices-dangers-of-violating-solid-principles-in-csharp
https://learn.microsoft.com/en-us/archive/msdn-magazine/2014/may/csharp-best-practices-dangers-of-violating-solid-principles-in-csharp
https://web.archive.org/web/20150202200348/http:/www.objectmentor.com/resources/articles/srp.pdf
https://web.archive.org/web/20150202200348/http:/www.objectmentor.com/resources/articles/srp.pdf
https://web.archive.org/web/20150905081105/http:/www.objectmentor.com/resources/articles/ocp.pdf
https://web.archive.org/web/20150905081105/http:/www.objectmentor.com/resources/articles/ocp.pdf
https://web.archive.org/web/20150905081111/http:/www.objectmentor.com/resources/articles/lsp.pdf
https://web.archive.org/web/20150905081111/http:/www.objectmentor.com/resources/articles/lsp.pdf
https://web.archive.org/web/20150905081110/http:/www.objectmentor.com/resources/articles/isp.pdf
https://web.archive.org/web/20150905081110/http:/www.objectmentor.com/resources/articles/isp.pdf
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start

International Journal of Core Engineering & Management

Volume-7, Issue-02, 2022 ISSN No: 2348-9510

206

principles 1st Edition” Microsoft press (Oct 09, 2014)
10. Bipin Joshi “Beginning SOLID Principles and Design Patterns for ASP.NET Developers 1st

ed. Edition“ Apress Publisher (Apr 08, 2016)

