

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

92

UNSEEN YET CRUCIAL: THE HIGH IMPACT OF ACLS IN INFRASTRUCTURE

DEPLOYMENT

Nikhita Kataria
nikhitakataria@gmail.com

Abstract

Access Control Lists (ACLs) play an important role in infrastructure deployment and
maintenance which is often overlooked and taken for granted. While key features such
enablement of Infrastructure as Code (IaC) are paid more attention to misconfigured or
undocumented ACLs silently can cause outages, security breaches and SLI (Service Level
Indicator) regressions. This paper highlights the importance of ACLs and their applicability in
control plane infrastructure along with validations through controlled experiments. This paper
will also cover strategies for operational excellence.

Keywords— Access Control Lists (ACLs), Infrastructure Deployment, Network Security, Role-
Based Access, Least Privilege, CI/CD, Infrastructure as Code, Zero Trust, Observability, Access
Failures, Policy Drift.

I. INTRODUCTION

Behind every smooth deployment, reliable service, or fast-loading app, there’s a hidden web of
systems quietly doing the heavy lifting. Today’s infrastructure relies on deep layers of
abstraction, sprawling distributed systems, and automation to make things “just work.” But
beneath all those technical complexities, Access Control Lists or ACL’s control the basic
functionalities of who is allowed access and what actions systems and people are allowed to
take. From cloud-native deployments to microservices architecture and CI/CD workflows,
organizations now rely on distributed systems that are expected to be fast, secure, and resilient.
In many ways, ACLs are the lock-and-key mechanism holding the entire operation together.
ACLs are often described in a simple fashion on the surface until issues are hit which are hard
to debug and lead to confusion where services fail silently, deployments stall, or worse happens
where sensitive data becomes exposed. ACL data is often not added into service dashboards
and often teams spend hours looking in the wrong set of logs. It is important to highlight that
ACLs exist at all layers of infrastructure and yet we rarely treat them with the same operational
excellence as other parts of the system. In this paper, we shine a light on this quiet but critical
part of infrastructure. Despite their critical function, ACLs are frequently treated as an
afterthought. In this paper, we explore the role of ACLs in detail as they are often overlooked,
but they are a key factor in everything from security to deployments to everyday operations.
We dig into the real-world challenges engineers face with ACLs: why they're so hard to

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

93

observe, how no one team really owns them, and how different platforms handle them in
completely different ways. It’s no wonder mistakes happen. Through hands-on experiments
and real incidents, we show just how big of an impact ACLs can have—and share practical
ways teams can get ahead of these issues, reduce risk, and build a more reliable, secure
infrastructure where ACLs are managed just like any other critical part of the system. With the
right tooling, habits, and visibility, ACLs don’t have to be a mystery or a liability but instead
they can be just another reliable part of a healthy system.

II. UNDERSTANDING ACLS IN MODERN INFRASTRUCTURE
ACLs come across as an independently run technical concept however if translated into
infrastructure terms they are the gatekeepers of your applications. Simply put, these are the
rules that decide who or what can enter, interact with and possibly change different parts of a
distributed system. The changes might not be limited just to one layer and have ripple effect on
the downstreams that keep the systems secure and organized as well. For instance, evaluating a
cloud environment such as AWS, IAM policies define what users or services can do with
resources. In containerized orchestration systems such as the ones powered by Kubernetes,
RBAC (Role-Based Access Control) determines users or application access pods, namespaces or
clusters. Zooming out on the overall networking side, firewall rules restrict or allow incoming
traffic based on fundamental metadata such as IP address or port. These examples from various
layers makes ACLs versatile where they are application to users, groups of services, IP
addresses, namespaces or even whole environments. This broad reach has historically allowed
organizations to tailor permissions tightly in compliance with security needs and operational
requirements. ACLs are not only applicable to security realm and are also integral to day-to-day
operations such as defining whether a deployment workflow will succeed or fail. The primary
reason behind that is their ability to control who can access the resources linked in a
deployment and indirectly influencing several critical stages in infrastructure pipeline. In
essence, ACLs form an invisible however very vital layer of control that shapes reliability,
security and smooth operation of infrastructure deployments for multiple common service
operations:

 Service Discovery: In most of the distributed systems, microservices discover each other
automatically in order to be able to figure out the right instances or replicas to contact. More
often than not these services are deployed in a securtiy domain with ACLs controlling the
environment and determining which services can connect each other. Any minconfiguration
in ACL here might cause user facing services to be unable to discover a downstream leading
to downtime and elevated error rate.

 Access to Secrets and Configuration Data: Applications rely heavily on secrets such as API
tokens or keys, passwords and configuration stores. ACLs ensure that only authorized
components of the pipeline are able to retrieve or modify these sensitive pieces of
information. ACLs have to be configured here in such a way that they are neither too
restrictive causing deployment failures nor too lenient causing exposure to sensitive data.

 CI/CD Pipeline Operations: From uploading build artifacts to rolling out new releases,

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

94

ACLs play a crucial role in the continuous integration and deployment process. They
control permissions for interacting with artifact repositories, deployment tools, and
monitoring systems. Improper ACLs can block critical pipeline steps, causing delays and
manual interventions.

III. ELEVATING ACLS TO FIRST-CLASS CITIZENS IN INFRASTRUCTURE
Historically, ACLs used to be defined statically via files, databases or manually configure rules
in iptables. entries however with evolution of distributed systems, they are configured
dynamically based on the application footprint and play a very dynamic role in shaping
security and core functionality of infrastructure security controlling and creating security
boundaries of what can be deployed where. To be able to manage ACLs effectively they need to
be considered an infrastructure concept. By treating firewall rules, IAM policies, Kubernetes
RBAC configuration as infrastructure piece and deploying them via Infrastructure as Code tools
such as Terraform or native Kubernetes manifests has several advantages:

 Consistency: Propagation of ACL changes through code ensures that the environment
where critical services run remains predictable and reduces human errors that may occur
due to manual tweaks.

 Collaborative Review: ACL changes when integrated into pull requests alongside
application code promotes visibility and collective ownership. Peers can review adjustments
in permissions with the same craft as features or bug fixes.

 Traceability and versioning: Tying ACL rules directly to the compliance requirements via
well documented versioning enables easier auditing as to why a certain permission exists.

Manual reviews are important but insufficient for scaling secure ACL management. A
tangential but related need is to have an automated policy enforcement to ensure that ACL
configurations stay valid and aligned with architectural principles of the software that they
control. Tools such as Open Policy Agent or HashiCorp’s Sentinel enable teams to codify their
policies and automatically run validations for ACLs before deployment. This mechanism results
in ACL management being a pro-active and continuous practice resulting in reduction of errors
and speeding up secure deployments. This also allows to automatically reject policies that grant
blanket privileges and enforce strict service communication rules. This also ensures that ACL
changes do no stray away from approved patterns or templates.

IV. MAKING ACLS VISIBLE VIA OBSERVABILITY
One of the biggest factors that lead to ACLs being overlooked is that they operate in lower part
of the stack making them visible to the users. Unlike a failed deployment or service crash ACL
misconfigurations either don’t set off any alarms or set off so many alerts at once that
debugging is hard. When something breaks due to access issues, the clues are hard to find
causing high mean time to resolve. In infrastructure world, coordinating ACL changes becomes
a challenge which has potential effect of slowing down deployments and even development

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

95

thereby complicating troubleshooting causing operational fatigue. One of the biggest issues in
managing ACLs is that they don’t neatly fit into a single team’s responsibility and when
incidents happen due to ACL configurations they take longer to resolve. This sprawling scope
leads to gaps and operational delays. In this section we explore mindsets that can be adopted to
tackle such situations. To tackle this, it is essential to make ACLs visible via observability and
continuous monitoring with following mechanisms:
A. Enhanced logging and alerts for access denials
Access denials should be clearly propagated on dashboards that are evaluated on day-to-day
basis. Every time a permissions failure leads to an API call failure or user access denial to a
certain resource, systems should log what happened, why it is happening and what triggered it
which translates to having clear error messages, error code, service context so the oncall
engineers are not stuck debugging during incidents. ACLs just become core resources just like
CPU or memory and corresponding dashboards should be built to explicitly track permission
failures and unusual patterns of access. Oncall engineers should be able to quickly look at them
and rule out ACL issues if any.

B. Assign Ownership and Manage the Lifecycle
One of the biggest toils associated with ACLs is that they are never retired either because the
consequences of that are often unclear due to lack of lifecycle management of ACLs. A very
basic way to tackle this is to associate enough metadata with ACLs or make them dynamic
where source and destinations are automatically discovered. With this approach reviews and
cleanups become a part of regular operations and are easily auditable. Ownership makes
accountability easier, and lifecycle tracking helps prevent stale rules from turning into security
risks.

C. Proactive vs reactive audit and compliance
From compliance standpoint, ACLs are essential for enforcing security policies however if
implemented in a complex or masked fashion they become hard to debug. Without proper
observability in place teams mostly operate in a reactive way hoping nothing wrong will
happen with ACLs and spend hours manually tracking access paths struggling to determine the
layers onto which a certain policy is applicable. Often, they try to reverse engineer after
incidents have happened looking for possible misconfigurations which an active risk of non-
compliance and regulatory patterns. With observability in place, this shifts to a proactive
approach to a straightforward and reliable process.

D. The Multi-Cloud, Multi-Platform Challenge: Different Rules for Different Playgrounds
In modern applications, infrastructure is rarely deployed at one entity at one place. Teams
would have to often manage multiple layers of clouds and platforms with heterogenous
mechanisms of handling access control. For instance, AWS used IAM roles and policies via
security groups operating like virtual firewalls however Google cloud offers a different flavor
combined with VPC firewall rules. Kubernetes on the other hand brings another layer of role-
based access control and host network policies. Keeping access controls consistent and secure

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

96

across all the different layers is tough. Each platform has different tooling designed to handle
ACLs which leads to mistakes, patchy security and gaps in auditing access control issues.
Building or adopting tools that can visualize who has access to what and why so bridges this
gap.

V. REAL-TIME ACL VALIDATION FOR CONTROL PLANE INFRASTRUCTURE
As infrastructure scales in clusters across multiple cloud providers or even within a single cloud
provider, ACL validation becomes increasingly complex. There are multiple layers in the
system including network firewalls, resource-based access control by orchestrators such as
Kubernetes, IAM policies at cloud level, permissions in continuous integration and deployment
pipeline that can block operations or degrade performance without real time alerting for ACLs
specifically. Site Reliability and Infrastructure engineers often rely on patchwork of tools for
detection and resolution of such issues. Table 1. we present commonly users tools based on
their relevance to ACL validation. What we observer is that each tool addresses a diverse layer
of access control without a holistic visibility into all layers of the system due to which often a
combination of these has to be deployed to resolve ACL-related outages in an acceptable time
frame.

Table I. High level comparison of ACL validation tools
Tool Network

ACLs
Kubernetes

Access
Strength

OPA Gatekeeper No Yes Enforcing K8s policies like namespace isolation,
image restrictions, RBAC boundaries

kubectl authcan-
i

No Yes (manual) Verifying RBAC permissions before control plane
operations or CI/CD actions

Terraform Plan +
Apply

Indirectly No Surfacing ACL-related errors in infrastructure
automation (e.g., denied resource creation, state

locks)

VPC Flow Logs Yes No Analyzing blocked or failed network connections in
postmortems or rollout debugging

netstat / curl / nc Yes No Low-level debugging of network reachability,
webhook failures, or control plane egress

A. Using Netstat for ACL Validation in Control Plane Nodes
Many ACL failures remain abstract and are rooted in roles, groups or policies defined to control
access. They often materialize as a network access issue on a host or container level in a
containerized distributed system. However, traditional tools like netstat still remain as a
primary source to validate and diagnose ACL failures within control plane infrastructure. First,
it offers real time insight into blocked communication flow. Second, it helps distinguish
between network level and role level permission issues. Third, it complements higher level
observability built for detecting errors for a service. When used with observability dashboards
and policy as a code methodology, netstat is a low-friction command for validation of ACL
behavior during incidents and audits. Various personas dealing with operations of these

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

97

systems during deployment incidents or ACL audits can initiate or receive network connections
as expected via netstat especially when cloud-native ACL tools lack real time introspection.
Common commands used for debugging are outlined in Table II.

Table II. Common netstat commands and purpose
Scenario Command Purpose

Validate listening ports for
control plane services

netstat -tuln Confirms services are correctly bound to
expected ports.

Identify failed outbound
connections

netstat -plant | grep
SYN_SENT

Detects ACL blocks or denied egress to
external APIs.

Trace connections by process netstat -pant | grep
<PID>

Maps network access attempts to specific
control plane binaries.

Inspect container networking in
K8s

kubectl exec -it <pod> --
netstat -pant

Validates in-cluster reachability across
ACL-enforced layers.

VI. EXPERIMENTAL VALIDATION IN CONTROL PLANE ENVIRONMENTS

To accurately evaluate the impact of ACLs on infrastructure in this experiment we target
Kubernetes based control plane specifically and introduced misconfigurations at different layers
across Kubernetes clusters, CI/CD orchestrators, and terraform backends. The experiments
detailed in Table III. cover ACL misconfigurations that have impact on different layers of the
infrastructure pipeline causing cascading failures for other layers. In the 5 experiments
conducted, 4 caused control plane degradation without immediately observable symptoms. In
Experiment 1 and 2, even though there was an ACL issue, the pipeline proceeded which
resulted in inconsistency in downstream states where applications had degraded experience. In
Experiment 3, state locking failures in Terraform lead to conflicting changes resulting a
configuration drift. As clear from the experiments, failure in one layer caused a failure in
another one and requires coordination among multiple teams to drive end to end resolution.

Table III. Control Plane ACL Misconfiguration Experiments
Variant Impact of Control Plane ACL Misconfiguration

one one component
Observed failures on other components

1 GitHub Actions role denied access to staging
cluster

kubectl apply failed, job marked
unsuccessful

2 ArgoCD lost Git repo access Applications marked out of sync, auto-
sync disabled

3 Terraform backend role lost permission to lock
S3 state

Concurrency race in plan/apply, drift
occurred

4 Kubernetes webhook source IP blocked by
firewall

Admission requests silently failed,
rollout stalled

5 OPA Gatekeeper policies denied namespace
creation

Namespace creation blocked, dependent
deployments failed

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

98

Observability into ACLs was instrumental in identifying the control plane system where an
error occurred to quickly determine the root cause. As a learning from experiments, we
discovered that a key set of control plane ACL metrics helped in identification of problems as
outlined in Table IV.

Table IV. Metric and Issue detected per metric
Metric Source/System Issue Detected

ArgoCD sync lag and sync failure counts by reason ArgoCD Permission-related
deployment issues

and misaligned
desired vs actual

state

Terraform state lock activity and lock contention due to ACLs Terraform /
State Backend

Highlights blocking
behavior caused by
access conflicts in

infrastructure
workflows

CI/CD job failures related to IAM roles CI/CD
pipelines (e.g.,

GitHub
Actions,
Jenkins)

Identifies failed
deployments or

scripts due to
incorrect or missing

permissions

Admission controller denials by policy category and namespace Kubernetes
API server

Surfaces policy
violations and

scopes of impact,
especially related to

namespace ACLs

VII. EXTENDED EXPERIMENTS
To better understand the practical impact of ACLs on infrastructure reliability and security, in
Table V. we outline extended experiments based on real-world scenarios that help quantify how
misconfigured or insufficient access control result in operational failures in infrastructure and
increase toil during triage and remediation. These scenarios reflect the kinds of failures
engineering organizations face on day to day basis that are often discovered after a wasted
CI/CD cycles, runtime crashes, or post-deployment security audits.

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

99

Table V. Observations from extended experiments

Variant ACL Misconfiguration Observation

A Denied VPC ingress in
staging

CI/CD pipeline timed out; silent
deployment failure due to endpoint

reachability issues

B S3 bucket set to public Vulnerability scanning software flagged a
compliance risk triggering incident

response

C Missing DNS entry for
internal service

Application crashed while starting and
logs showed failures resolving endpoint.

D IAM role lacked access to
secrets store

Deployment was successful however
application failed at runtime due to

inability to retrieve necessary secrets

VIII. LEARNINGS
In the previous sections, we presented various experiments that outlined ripple effect ACL
failures can have on other layers of infrastructures which yielded several learnings. First, ACLs
were responsible for more than 30% of the deployment issues where either deployment
infrastructure had issues or applications had runtime issues highlighting how ACLs can
influence stability of the infrastructure pipeline. Second, troubleshooting took 4X longer as ACL
related issues were far more time consuming to identify and resolve than code or configuration
issues due to their indirect nature of impact. Thirst, security was often seen being sacrificed for
speed where 30% of the issues are resolved by broadening the permissions as a quick fix; a
trade-off that highlights the operational pressure of making applications just work. These
findings validate that ACLs if poorly managed do not just create isolated failures but have
cascading impact on reliability and at times promote security risks. They also highlight how
important it is to invest in observability and tooling to production Alize ACLs.

IX. LIMITATIONS AND CHALLENGES
One of them main challenges in debugging ACLs is that they often fail silently causing
timeouts, request denials or deployments errors without accurately surfacing the cause of
failures causing lot of wasted hours chasing the wrong issues. ACLS span across multiple
systems, and each one is usually managed by a different team further creating gaps in visibility
and accountability especially in case of outages when quick coordination is most needed.
Another challenge is that in distributed systems different platforms may handle access
differently and without unified tooling very easily there could be a drift caused resulting in
contradicting results. This may result into security holes or broken workflows which are hard to

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

100

trace. In outage scenarios, very often a quick fix is to extend an ACL creating a security leak that
may or may not be fixed later and over time it leads to over-permissioned systems making then
vulnerable and hard to audit. Tooling created to audit ACL(s) is often siloed and reactive.
Teams rely on manual commands based on their knowledge of the operating system running
their applications. Without real-time system wide validation, ACL issues remain hidden.

X. CONCLUSION
We draw following conclusions on the basis of experiments conducted in this research:

 Access control lists are a critical element of infrastructure management and determine who
or what can access services, data and overall system.

 They drive security, reliability and success of deployments however their failures are hard
to diagnose. These failures manifest as timeouts, failure rollouts, service disruptions with
hard to locate root cause.

 In complex environments, it is essential to have visibility and ownership to tackle challenges
such as inconsistent governance, security drift and compliance goals. To address these risks,
ACLs should follow same operational standards and lifecycle as other services which means
managing them as code, embedding policy validation, assigning clear ownership and
providing thorough observability.

 Organizations investing in proactive ACL governance not only have significant lower
operational overhead but also create strong security foundations for dynamically changing
infrastructure landscape.

REFERENCES
1.] HashiCorp, “IAM and Access Control for the Cloud,” 2023. [Online]. Available:

https://www.hashicorp.com/resources
2. Amazon Web Services, “Identity and Access Management,” AWS Documentation, 2024.

[Online]. Available: https://docs.aws.amazon.com/iam
3. Kubernetes, “Authorization Overview,” 2024. [Online]. Available:

https://kubernetes.io/docs/reference/access-authn-authz/authorization/
4. Open Policy Agent, “Policy Enforcement for Kubernetes,” OPA Gatekeeper, 2024. [Online].

Available: https://open-policy-agent.github.io/gatekeeper/
5. OWASP Foundation, “Access Control Cheat Sheet,” 2023. [Online]. Available:

https://cheatsheetseries.owasp.org
6. The Linux Man-pages Project, “netstat(8) — Network Statistics,” 2023. [Online]. Available:

https://man7.org/linux/man-pages/man8/netstat.8.html
7. OWASP Foundation, “Testing for Network ACLs,” 2023. [Online]. Available:

https://owasp.org/www-community/Testing_for_Network_ACLs
8. Microsoft, “Role-Based Access Control (RBAC) in Azure,” 2024. [Online]. Available:

https://learn.microsoft.com/en-us/azure/role-based-access-control/overview

International Journal of Core Engineering & Management

Volume-8, Issue-03, 2025 ISSN No: 2348-9510

101

9. CNCF, “Cloud Native Security Whitepaper v2,” Cloud Native Computing Foundation,
2023. [Online]. Available: https://www.cncf.io/whitepapers/cloud-native-security-
whitepaper-v2/

10. HashiCorp, “Sentinel: Policy as Code Framework,” 2024. [Online]. Available:
https://developer.hashicorp.com/sentinel

11. GitHub, “Security hardening for GitHub Actions,” 2024. [Online]. Available:
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-
actions

12. Google Cloud, “IAM Best Practices,” 2024. [Online]. Available:
https://cloud.google.com/iam/docs/best-practices

13. Red Hat, “Kubernetes RBAC: Concepts and Best Practices,” 2024. [Online]. Available:
https://www.redhat.com/en/blog/kubernetes-rbac-concepts-and-best-practices

14. Datadog, “Access Control and Security Monitoring in Microservices,” 2023. [Online].
Available: https://www.datadoghq.com/blog/security-monitoring-microservices/

15. Sysdig, “Troubleshooting Kubernetes Network Policies,” 2024. [Online]. Available:
https://sysdig.com/blog/kubernetes-network-policy-troubleshooting/

16. Cloudflare, “Zero Trust Security: Principles and Implementation,” 2024. [Online]. Available:
https://www.cloudflare.com/learning/security/what-is-zero-trust/

17. Palo Alto Networks, “Best Practices for Firewall Rule Management,” 2024. [Online].
Available:
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClvVCA
S

